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Introduction 
Roadway usage, particularly by large vehicles, is one of the fundamental factors determining the lifespan 

of highway infrastructure, e.g., as evidenced by the federally mandated Highway Performance 

Monitoring System (HPMS). But the complexity of Weigh in Motion (WIM) and other classification 

stations makes them difficult and costly to maintain. Some of the classification stations employ axle 

counters, but the least expensive of these stations use dual loop detectors to measure vehicle length 

and classify vehicles based on this measurement. To date, collecting reliable length data from single loop 

detectors has been considered impossible due to the noisy speed estimates. Single loop detectors 

promise to be an inexpensive alternative to spread classification coverage to the existing count stations 

and existing traffic operations detector stations. By extending classification to the relatively high density 

of real time traffic monitoring stations in urban areas, the classification work could allow these urban 

traffic management systems to better monitor freight traffic within the metropolitan areas. 

The research seeks to develop a means to reliably classify vehicles using estimated vehicle length from 

single loop detectors. Single loop detectors are the most common vehicle detector, yet they are not 

used for vehicle classification due to the inherent noise in the individual vehicle length estimates. This 

work has developed a means to extract more reliable vehicle speed estimates from single loop 

detectors, and thus, vehicle length estimates as well. This new, reliable, single loop detector 

methodology for classifying vehicles based on estimated vehicle length is significant because it will 

provide a low cost means of collecting vehicle classification data by extending the capabilities of existing 

single loop detectors. There are thousands of single loop detectors on the freeways within the region 

served by NEXTRANS. 

This approach is meant to supplement the network of traditional vehicle classification stations rather 

than supplant them. However, this work also promises to improve the performance of the traditional 

classification stations by providing a viable means of estimating speed and length when one loop fails in 

a dual loop detector; thus, allowing such a station to remain on line while awaiting repairs. The research 

should yield results in the short term, being applied to existing single loop detector stations and will 

continue to yield benefits into the long term as long as these classifications are employed by the various 
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state DOTs. The research is advanced, because we are able to extract high precision individual vehicle 

data from a sensor that had previously been thought of as only being capable of providing aggregate 

measurements, it is also exploratory because we sought out new locations and challenging traffic 

conditions. In the process, we uncovered several chronic detector errors that degrade classification 

performance as well as aggregate measures of flow, speed and occupancy. 

This work represents an innovative use of the existing traffic monitoring infrastructure to provide data 

that will feed in to larger systems perspective (e.g., augmenting existing HPMS data collection). The 

work feeds two of the center's three "research pillars," it explicitly focuses on collecting vehicle 

information (e.g., the number of trucks in the passing fleet), which in turn is important for modeling and 

forecasting the performance of the infrastructure (i.e., vehicle infrastructure interactions). Needless to 

say, a better measure of truck (and thus freight) movements will help maintain the infrastructure (in 

terms of financing, e.g., forecasting when a facility will need rehabilitation), and improve mobility to all 

classes of freeway travelers (highway passenger, highway freight, and highway transit). The new 

information on truck flows will help provide more efficient travel to freeway users.  

 

Findings 
Speed estimation, length estimation, and vehicle classification algorithms were developed and improved 

in the course of this work. Approximately 21 hours of directional traffic data were ground truthed from 

34 different data sets collected at 22 different locations and an average of 3.3 lanes per set. A total of 

78,774 detector actuations were manually ground truthed (in the absence of a detector error, there 

should be exactly one actuation per vehicle). Roughly a quarter of these data come from congestion. 

Three different, chronic detector errors were observed at several of the detector stations: splash-over 

(SO), pulse break up (PBU), and detector dropout without return (DOwoR). These errors degrade 

classification performance as well as conventional speed, flow and occupancy; at single loops and dual 

loops alike. Preliminary diagnostic algorithms for identifying SO and PBU errors were developed and 

should be transferable to most loop detector stations (single loops and dual loops alike). The SO 

algorithm only detects the presence of the problem. The PBU algorithm is able to go further, it can 

repair most of the observed errors. Working with ODOT, we adjusted the detector settings at four 

detector stations and we were successful in eliminating the chronic detector errors at most of these 

stations. If these results are typical, the improved detector calibration enabled by our research could 

lead to a very inexpensive means to improve the quality of loop detector data at existing stations. 

During free flow: at stations without PBU and without SO we had a correct classification rate of 96%, of 

the errors (72% of the errors were due to non-vehicle pulses (NVP), in this case due to vehicles changing 

lanes over the detector). The correct classification rate drops to 92% from raw data at stations with PBU 

(47% of errors due to NVP, including extra pulses from PBU), but improves to 98% when using our 

diagnostic algorithms to eliminate PBU (78% of errors due to NVP). The correct classification rate drops 

to 89% at stations with SO (76% of errors due NVP). Note that this analysis was conducted on a per 

vehicle basis, so in error with one vehicle is not allowed to cancel an error with another vehicle. During 

congestion: all stations used for classification evaluation exhibited PBU or SO, we had a correct 
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classification rate of 85% (17% due to NVP), but improves to 88% when using our diagnostic algorithms 

to eliminate PBU (12% of errors due to NVP). 

Performance from the single loop detectors is comparable to dual loop detectors when traffic is free 

flowing. The length based classification performance degrades by about 10% during congestion because 

the individual speed estimates are still based on a sample of vehicles and in heavy congestion it is 

possible for a given vehicle's true speed to be far from the center of the sample. These congested 

conditions can be identified based on the speed estimates, so if the degradation is unacceptable the 

classification results can be discounted or subsequent research can develop adjustment factors.  

After excluding the chronic detector errors (PBU, SO, and DOwoR), most classification errors were due 

to a true vehicle length being close to the boundary between two bins and the estimated length falling 

just on the other side of the boundary. Using thresholds of 22 and 40 ft between vehicle classes, class 2 

(the middle class) had a significantly higher error rate than the other two classes. The higher rate of class 

2 errors arose for several reasons, first, class 2 has two boundaries, so unlike the other two classes, by 

definition, all class 2 vehicle lengths are within 9 ft of one boundary or the other and thus, more 

susceptible to the boundary issue noted above. Roughly 40% of the class 2 vehicles were within 4 ft of a 

boundary while only 15% of class 1 (the short vehicles) and under 10% of class 3 (the long vehicles) were 

within 4 ft of their respective boundaries. Such boundary errors also impact class 2 vehicles when using 

dual loop detectors to measure vehicle length. 

 

Recommendations 
Discovering the extent of the chronic detector errors was an unanticipated byproduct of this research, 

but it may also prove to be one of the most significant findings since it potentially impacts most loop 

detector deployments. With conventional detector aggregation, e.g., 30 sec or 5 min averaging, the 

chronic errors often go unnoticed unless they are severe. Our diagnostic algorithms show great promise 

for detecting PBU and SO. After further refinement, in the short term these algorithms could be 

incorporated into a field diagnostic tool to assess the performance of a given station, either by tapping 

into the data upstream of the controller, e.g., via the InfoTek Wizard, or running an alternate controller 

program for a day or two, e.g., Caltrans Log_170. In the longer run, such tests should be incorporated 

into the regular controller software so that the controller can continually assess the health of the 

detectors. More research is necessary for catching DOwoR since the resulting time series from these 

errors are usually indistinguishable from the passage of a shorter vehicle. We have made some progress 

in catching DOwoR by comparing vehicle actuations between successive stations, but more work is 

needed. In the mean time, as one might expect, all of the stations that we observed having DOwoR also 

exhibited PBU. So in these cases, it is still possible to identify that the station has a problem. Operating 

agencies and freeway vehicle detector manufacturers (loop detector and non-invasive detectors) should 

evaluate these tools for potential adoption. 

Operating agencies with single loop detectors should consider deploying the vehicle classification 

scheme developed in this research as a means to extract more information from their existing detector 



NEXTRANS Project No 003OY01Technical Summary - Page 4 

infrastructure. Similarly, manufacturers of non-invasive detectors that emulate single loop detectors 

(e.g., Image Sensing Systems-RTMS) should consider employing these ideas in their classification 

scheme. 

Finally, a practical length based vehicle classification scheme needs to be robust to the large discrete 

steps between classes (whether from single or dual loop). Further work is needed to develop strategies 

for mitigating these boundary errors. One example is the simple strategy of using buffer regions, e.g., 

vehicles with lengths from 19 ft to 25 ft are considered "class 1 or class 2" vehicles and treated 

accordingly. Since these vehicles are definitely at the extreme end of their class, they might be treated 

differently than vehicles closer to the center of the class (e.g., borrowing ideas from fuzzy logic, instead 

of counting a 24 ft vehicle as 100% class 2, it might be counted as 0.8 class 2 and 0.2 class 1). Like the 

chronic detector errors, this discovery was an unanticipated byproduct of the detailed ground truthing 

and analysis. Determining the optimal correction was beyond the scope of the present work, but should 

be examined in future research. 
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CHAPTER 1.  INTRODUCTION

1.1 Background and motivation

Roadway usage, particularly by large vehicles, is one of the fundamental factors

determining the lifespan of highway infrastructure, e.g., as evidenced by the federally

mandated Highway Performance Monitoring System (HPMS). But the complexity of

Weigh in Motion (WIM) and other classification stations makes them difficult and costly

to maintain. As a result, there is interest both at the state and federal level for a lower cost

vehicle classification system. Each state typically has several dozen WIM stations,

supplemented with many more vehicle classification stations. Some of the classification

stations employ axle counters, but the least expensive of these stations use dual loop

detectors to measure vehicle length and classify vehicles based on this measurement (e.g.,

the state of Ohio currently has 216 permanent count stations, roughly half of which

provide WIM or axle based classification, 50 provide length based classification from

dual loop detectors and 49 only provide volume data from single loop detectors).

Dual loop detectors can measure speed and vehicle on-time directly, allowing for

direct length measurement. At single loop detectors speed can only be estimated. To date,

collecting reliable length data from single loop detectors has been considered impossible

due to the noisy speed estimates. Single loop detectors promise to be an inexpensive

alternative to spread classification coverage through the existing count stations and the

existing traffic operations detector stations. The research seeks to enable such an

extension to these existing detector stations. By extending classification to the relatively

high density of real time traffic monitoring stations in urban areas, the classification work

could allow these urban traffic management systems to better monitor freight traffic
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within the metropolitan areas (e.g., within the region served by NEXTRANS, Chicago

has 2,400 single loop detectors, and Minneapolis/St. Paul have 3,500 single loop

detectors). New, out-of-pavement detectors seek to replace loop detectors using wayside

mounted sensors, e.g., the Remote Traffic Microwave Sensor (RTMS), but most of these

detectors emulate the operation of single loop detectors and this research would largely

be applicable to those detectors as well.

Prior to undertaking the present effort, we had already overcome most of the

speed and length estimation problems at single loop detectors, and demonstrated very

good performance at two locations (Coifman, 2007, Coifman and Kim, 2009). The single

loop based vehicle classification is within 95% agreement with concurrent measured

length classification from dual loops. That work included manual verification with

roughly six hours of concurrent video data (24 lane hours) and the single loop

classification performance is comparable to dual loop classification performance. For

reference, an in depth review of the state of the art in loop based vehicle classification is

provided in Appendix A.

The present research focused on two issues that remained: (1) collect additional

ground truth at more than the two locations and under different traffic conditions for

further validation and development. (2) Address conditions that still challenge length

based classification from loop detectors, specifically: (a) pulse breakup (PBU), a problem

impacting single and dual loops alike when poorly tuned loops is to drop out in the

middle of semi-trailer trucks, yielding data that would suggest two short vehicles passed

when actually one long vehicle did; and (b) improving speed and length estimation

performance under heavily congested conditions.

Item (1) is conceptually straightforward, we used video cameras to film traffic

passing various detector stations under different conditions (e.g., congestion). But the

task remains labor intensive. We have developed software to semi-automate the process

and provide ground truth class and length, but it still takes a few seconds per vehicle for a

human user to enter the data. The additional data was used for further validation and

development of the speed and length estimation schemes and feed directly into Item (2).
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This second item received most of the resources in this study. While studying pulse

breakup, we uncovered two other chronic detector errors: splashover (SO) and dropout

without return (DOwoR). So the scope of our study was broadened to include these errors

as well. Of course catching these detector errors will have ripple effects, potentially

benefiting most applications that use loop detectors to monitor traffic. The ground truth

data was used to investigate if there are ways to further improve performance during

congestion. Classification accuracy is around 97% during free flow, but drops to about

85% during congestion due to the fact that speed continuously changes in queued traffic.
1

Performance from the single loop detectors is comparable to dual loop detectors when

traffic is free flowing. The length based classification performance degrades by about

10% during congestion because the individual speed estimates are still based on a sample

of vehicles and in heavy congestion it is possible for a given vehicle's true speed to be far

from the center of the sample. These congested conditions can be identified based on the

speed estimates, so if the degradation is unacceptable the classification results can be

discounted, they can be completely discarded, or subsequent research can develop

adjustment factors. After excluding the chronic detector errors (PBU, SO, and DOwoR),

most classification errors were due to a true vehicle length being close to the boundary

between two bins and the estimated length falling just on the other side of the boundary

from the true length.

While the main focus of this research is single loop detector based vehicle

classification, the research has to ensure accurate on-time measurements, an outcome that

will benefit both single loop and dual loop detector stations alike, whether or not they are

deployed for vehicle classification. As such, many of the advances at single loop

detectors will carry over to dual loop detectors. In fact, many of the advances are likely to

carry over to non-invasive sensors like the RTMS as well.

                                                  

1
 Unlike the earlier studies into single loop, length-based vehicle classification, these statistics do not allow over-

counting errors to cancel under-counting errors.
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1.2 Study objectives

The problem approach consisted of the following tasks:

1) Collect additional data: we have approximately 40 stations from CMFMS

phase I available for this study. ODOT has roughly doubled this number with

phase II, which just came on line at the start of the present study. These new

stations provide data from several different freeways, including: I70, I270,

I670, I71, and SR315.

2) We collected many hours of concurrent ground truth video data from the

detector stations, and then manually extracted the vehicle lengths. The ground

truth was then split into separate development sets and validation sets.

3) Using the development data sets, we found the detector errors, characterized

the nature of the detector errors empirically, and conducted further theoretical

development. Similarly, we continued to refine the speed estimation

techniques using the expanded development data sets.

4) Used the validation data sets to evaluate the performance of the advances from

item 3.

5) Documented the results, presenting them in a final report, as well as various

conferences and peer reviewed journals.

1.3 Organization of the report

Accurate vehicle classification depends on accurate vehicle measurements and

estimates. Most of this work is devoted to addressing detector errors. Chapter 2 presents

the background on identifying chronic detector errors and reviews our data sources.

Chapter 3 presents an algorithm to identify splashover. Chapter 4 presents an algorithm to

identify pulse breakup. Chapter 5 presents a pilot study for identifying detector dropout

without return. At which point we are then ready to proceed into chapter 6, vehicle

classification from single loop detectors. The work closes with conclusions in Chapter 7.
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CHAPTER 2.  IDENTIFYING CHRONIC DETECTOR ERRORS- BACKGROUND AND

DATA SOURCES

Loop detectors are effectively metal detectors embedded in the pavement. They

are the most commonly used vehicle detector for automated surveillance. A typical loop

detector station will either have one or two loops per lane (single or dual loop detectors,

respectively). Data obtained from loop detectors can be used for applications such as

ramp metering, incident detection, travel time prediction, and vehicle classification. The

performance of such applications greatly depends on the quality of detector data. Data

collected from loop detectors are prone to detector errors caused by hardware and

software problems. Detector errors degrade the quality of detector data, and the impact of

these errors will propagate to subsequent measurements such as flow, occupancy, and

speed from the loop detectors. In the end, unreliable data incorporating detector errors

could affect the control decisions and traveler information provided to drivers based on

the detector’s data.

There has been considerable research effort to screen the quality of loop detector

data. Data screening methods have been developed at the macroscopic and microscopic

levels. Macroscopic tests embody the formalization of heuristics to check average

measurements from a given sample period against statistical tolerance, while microscopic

tests examine the individual vehicle actuations, when the detector turns “on” and “off”

for each vehicle that passes over a loop detector. The macroscopic tests are more

common, because conventional practice discards the microscopic data at the controller

cabinet after aggregation to macroscopic flow, occupancy and average speed.
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As examples of the macroscopic level of approach, Jacobson et al. (1990)

introduced a test for setting limits for acceptable values of flow for any given occupancy

on the basis of plausible ratios between flow and occupancy within specific occupancy

ranges. In particular, the algorithm was useful for detecting intermittent failures and short

pulses (hanging–off) malfunctions of loop detectors. A later study by Cleghorn et al.

(1991) presented several screening methods using macroscopic measurements. They

claimed to have obtained a tighter upper boundary from feasible flow-occupancy pairs to

be used to screen data from a single loop detector. They also presented additional

screening for dual loop detectors that includes a comparison of the received speed-flow-

occupancy points, a calibrated three-dimensional speed-flow-occupancy “acceptable

region” as well as comparison of measurements between upstream and downstream

loops. Chen et al. (2003) developed a macroscopic error detection test using the time

series of flow and occupancy measurements. Statistics computed over a whole day at

each detector are used to differentiate between a “bad” or “good” detector with respect to

various specific loop detector malfunctions, e.g., stuck and hanging. The algorithm did

not detect chattering or pulse breakup (i.e., a single pulse expected from a vehicle is

separated into two or more pulses if the detector “drop out” in the middle), but they

suggested that additional constraints, such as consistently high flow, should be useful to

detect loops with these errors. Turochy and Smith (2000) developed an integrated data-

screening procedure including a critical threshold value of measurements such as

occupancy and flow, and tests utilizing the relationships between speed, flow, and

occupancy. Among those tests included in the procedure, a maximum hourly flow

threshold test (e.g., 3,100 vehicles/lane/hr) was used to catch detector errors causing

higher flow.

At the microscopic level, Chen and May (1987) may have been the first to use

individual vehicle actuations, rather than the macroscopic measurements, to verify

detector data. They examined the ratio of a detector’s average on-time to average on-time

of all detectors at the loop station. This on-time ratio test provided a reliable indication of

detector status, e.g., the change of sensitivity. In particular, their experiment found pulse
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breakups and they surmised that the breakups might be caused by low loop sensitivity. In

addition, they found unexpected detector actuations in their data due to: lane change

maneuvers over the loop detectors, splashover (the erroneous detection in one lane of a

vehicle from an adjacent lane), and phantom actuations that are not due to vehicles.

Coifman (1999) presented a microscopic method utilizing the redundancy of a pair of

loops to assess the performance of dual loop detector and to identify detector errors;

namely, that during free flow conditions the on-times for a given vehicle from the pair of

loops should be virtually identical regardless of vehicle length. The method detected a

longer on-time problem due to delayed falling edge and cross-talk problems. Coifman

and Lee (2006) presented the mode on-time test as a measure of performance for single

loop detectors. The test calculates the most common on-time over a day. Assuming most

vehicles are free flowing passenger cars, this mode on-time should fall within a small

range. The test indirectly detects inappropriate level of loop sensitivity. Additionally,

minimum on-time and maximum on-time tests were applied to catch extreme errors due

to pulse breakup and detector sticking-on. Coifman and Dhoorjaty (2004) developed

eight detector validation tests using microscopic data to identify various errors both at

single and dual loop detectors. That work specifically classified errors into seven groups:

either the rising or the falling edge being premature or delayed, pulse breakup, missed

vehicle, and wrong detection. Cheevarunothai et al (2007) developed an algorithm to

improve the quality of dual-loop truck data so as to identify and correct detector problems

such as pulse breakups, cross-talk, and the difference of sensitivity in two loops.

Despite the previous research effort in this area, some significant detector errors

have not received much attention due to the difficulty of identifying their occurrence.

Splashover and pulse breakup are such cases. No study has explicitly attempted to offer

any means of detecting the presence or absence of splashover error. Pulse breakup

detection has been explored previously (Chen and May, 1987; Cheevarunothai et al.,

2007), but the previous methods were not sufficient to resolve the problem under all

conditions.
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The overall objective of our research is to develop algorithms to identify

splashover (SO) and pulse breakup (PBU). The algorithms are developed using loop

detector data with concurrent video-recorded ground truth data from the in Columbus,

Ohio. The splashover detection algorithm is designed to find detector stations exhibiting

chronic splashover problem, while the pulse breakup detection algorithm is designed to

identify pulse breakup from individual vehicle actuation data. Finally, the developed

algorithms are evaluated from several detector stations with the ground truth data.

2.1 Data Sources

2.1.1 Loop Detector Data

Individual vehicle actuation data were collected from the 69 detector stations in

the Columbus Metropolitan Freeway Management System (CMFMS), sampled at 240 Hz

(Coifman, 2006a). These stations include 330 loop detectors on the northbound /

eastbound freeway mainline lanes and 328 loop detectors on the southbound / westbound

freeway mainline lanes. In detail, the 46 detector stations on I-70/I-71 were installed

during the first phase of CMFMS, completed in 2001. These stations include 196 loop

detectors on the northbound / eastbound freeway mainline lanes and 194 loop detectors

on the southbound / westbound freeway mainline lanes. Another 23 detector stations

were installed on SR 315 / I-270 / I-70 / I-670 during the second phase of the CMFMS,

completed in 2006. These stations include 134 loop detectors on each of direction

freeway mainline lanes and six detector stations have RTMS. Figure 2.1 shows a

schematic of the study corridor. Roughly 90% of the Phase II detector stations have dual

loop detectors, while only 35% of the Phase I detector stations have dual loop detectors.

For most of the Phase I corridor there is one dual loop detector station every mile, with

two single loop detector stations between dual loop stations. As noted previously, only

one loop in a given dual loop detector is used to emulate a single loop detector. In many

cases, however, we can than compare the single loop detector results against the dual

loop detector results.
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2.1.2 Ground Truth Data

Ground truth data is used to develop and validate the various algorithms. The task

to extract the ground truth data consists of recording video of the loop detectors and the

concurrent detector actuations, digitizing the video, extracting individual frames, time

synchronization between loop data and video data, stepping through all of the loop

detector actuations individually, loading the specific frame corresponding to a given loop

detector actuation, and manually classify the detector actuation.

Most of the video comes from the existing traffic surveillance cameras in the

CMFMS. There are currently 99 traffic surveillance video cameras are operated in the

CMFMS, with 74 of them mounted near freeways. After reviewing camera views, we

found the set of cameras that provide good views across all lanes for one or both

directions at one or more detector stations. The traffic surveillance video cameras were

recorded with a VCR in the Columbus Traffic Management Center (TMC). For the other

detector stations that are not readily viewed from the surveillance cameras, a video

camcorder was set up on overhead bridges or the side of the road. Video was collected at

a total of 15 detector stations. Figure 2.2 typical views (A) of station 38 from a

surveillance camera and (B) of station 41 eastbound from a camcorder set up on an

overhead bridge (Woodcrest Rd in this case).

Both sources of video data were recorded in analog, thus an additional step of

digitizing the video was necessary. The digital video was stored in AVI format and the

frames were extracted in JPEG format at the rate of 30 frames per second (fps). A

purpose built software ground truthing tool with graphical user interface (GUI) was

developed in MATLAB to semi-automate the process of generating ground truth data.

The GUI interface can step through the detector data in a given lane and display both the

time series detector data for a few seconds before and after the actuation along with the

frame corresponding to the actuation time (this GUI was inspired by VideoSync,

Caltrans, 2007). The tool allows the user to manually record types of vehicles and errors

from the direct comparison between concurrent detector and video data. A user can mark

actuations as detector errors such as pulse breakup, splashover or a vehicle changing
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lanes. The GUI also allows the users to classify the vehicle as: motorcycle, short vehicle

(SV), medium vehicle (MV), or long vehicle (LV). In the research, a LV refers to a long

truck or a semi-trailer truck, while a SV refers to car, van, and pick-up truck. Vehicles not

included in SV, LV, and motorcycles are classified into MV, e.g., large vans, buses, most

single unit trucks, or most SV pulling long trailers. Once an actuation has been classified,

the user clicks a button and the GUI jumps to the next detector actuation in that lane. This

process was repeated for each visible lane during the entire time period of video data. As

discussed in the next chapter, for about half of the data a second pass was then made to

actually measure the vehicle's length.

In the end, approximately 21 hours of directional traffic data were ground truthed

from 34 different data sets collected at 22 different locations and an average of 3.3 lanes

per set. A total of 78,774 detector actuations were manually ground truthed (in the

absence of a detector error, there should be exactly one actuation per vehicle). Out of

these data, 9 sets include congestion, spanning 4.5 hrs and 20,576 detector actuations.
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CHAPTER 3.  AN ALGORITHM TO IDENTIFY SPLASHOVER

Splashover is the erroneous detection of a vehicle that is outside the desired

detection zone, and commonly this error arises when vehicles from adjacent lanes

erroneously actuate the detector. Typically when this error occurs the loop detectors in

two neighboring lanes record the same vehicle at roughly the same time. If not caught,

the splashover of one vehicle will likely be recorded as two distinct vehicles that almost

simultaneously passed over two adjacent loops. The resulting double count can lead to

inaccurate measurements, e.g., higher flow and occupancy, degrading the quality of loop

detector data. Splashover has not received much attention in the earlier research.

According to the Traffic Detector Handbook (Klein et al., 2006) splashover usually

occurs when the sensitivity level of a loop detector is set too high or a loop detector is too

close to the lane line. While the handbook offers some advice for fixing this problem, it

does not offer any characteristics of splashover or any means of detecting the presence or

absence of splashover. This section presents an algorithm to identify detectors exhibiting

chronic splashover problems. The splashover detection algorithm exploits the

characteristics of splashover revealed from the ground truth data.

3.1 Hypothetical Example of Splashover

The relation of an actual detection in one loop and a false detection from an

adjacent loop is illustrated in a time-space diagram of a single vehicle in Figure 3.1. A

schematic of the roadway is shown coincident with the distance axis. This hypothetical

example shows that a vehicle passing in lane 2 is falsely detected in loop 1, where on1

and on2 denote the actuation times of rising transition in loop 1 and loop 2, off1 and off2

denote the actuation times of falling transition in both loops. OT2 indicates the on-time
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from actual detection of a vehicle while OT1 indicates the on-time from the erroneous

splashover detection from the same vehicle. Since two on-times (OT1 and OT2) are

produced from a single vehicle, they just depend on the size of detection zones from

loops (denoted by DZ1 and DZ2). The size of the detection zones will likely differ from

the two detectors due to different sensitivity and distance to the vehicle. Technically, a

loop’s sensitivity is in inversely by proportional to the square of the distance to the

vehicle (Klein et al., 2006), and typically (but not always) the detection zone (DZ1) for

splashover should be smaller than the actual lane (DZ2). As seen in this figure, DZ2 is

larger than DZ1, thus OT2 from actual detection is longer than OT1 from splashover. The

difference of on-times (OT1 - OT2) is proportional to the difference of detection zone and

could be separated into the difference in rising transition times (DRTT = on1 - on2) and

the difference in falling transition times (DFTT = off1 – off2). When DZ1 falls within

DZ2, actuation times (on1 and off1) from splashover should fall into interval of the

actuation times (on2 and off2) from the actual detection of the vehicle.

The example in Figure 3.1 shows a single vehicle actuating loops in adjacent

lanes, but no other vehicles around. We term this situation "unique splashover". In

contrast, things get a little more complicated when splashover combines with a true

vehicle actuation in the given lane, the union of the splashover pulse and true pulse may

be longer than either of the two pulses individually. Figure 3.2 shows four hypothetical

examples where a lane 2 vehicle splashes over to lane 1, but a lane 1 vehicle also passes.

In theses cases, the splashover may appear as if the lane 1 detector is sticking on (Figure

3.2A-B), which we term "combined splashover", it may obscure the lane 1 vehicle

actuation (Figure 3.2C) or it may be completely obscured by the lane 1 vehicle actuation

(Figure 3.2D). In all of these cases the splashover does not result in a count error,

however, in Figure 3.2A-C lane 1 would measure an on-time longer than it should for the

passing vehicle. The combined splashover pulse might not be bounded by the original

pulse in lane 2.
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3.2 The Nature of Splashover

Typically, when splashover occurs, loop detectors in adjacent lanes actuate in

response to the same vehicle at roughly the same time, e.g., the hypothetical example in

Figure 3.1. Figure 3.3 shows three examples of actual splashover in lane 1 at a single

loop detector station (station 104 eastbound). Figure 3.3A shows the pulses from all three

lanes as the detectors respond to vehicles (throughout this example lane 1 is at the bottom

and lane 3 is at the top). In the absence of detector errors, a passage of a vehicle is

manifested as a single pulse, but according to the concurrent video, all three of the pulses

in lane 1 were erroneous. First, in Figure 3.3B, shows a unique splashover when a vehicle

passing in lane 2 is also recorded in lane 1 in the absence of any vehicles in lane 1. Next,

Figure 3.3C-D both show examples of combined splashover, where the valid on-time of a

short vehicle in lane 1 is extended due to splashover from lane 2. In both cases the on-

times are roughly twice as long as they should be for the given vehicle and speed. After

ground truthing 10 min of data at this station, total vehicles observed from video in lane 1

to lane 3 are 164, 346, and 347 vehicles, respectively. Reviewing the detector data, 318

out of 347 vehicles in lane 2 are erroneously detected in lane 1, i.e., 92% of vehicles in

lane 2 caused splashover in lane 1. Of these splashover events, 273 are unique splashover

and 45 are combined splashover. In terms of macroscopic measurement errors, flow in

lane 1 would be over-counted by the number of unique splashover events, i.e., more than

2/3 of the actuations in lane 1 are not due to vehicles in lane 1. While the combined

splashover events do not impact flow, both types of splashover will lead to an erroneous

increase in occupancy because the detector reports that it is on ( 1OT ) for a longer

cumulative time than it is actually occupied by vehicles.

Figure 3.4A plots the on-time for the splashovers seen in lane 1 versus the actual

on-time as seen in lane 2, the vehicle's lane of travel (i.e., OT1 versus OT2). Each point

represents the actual detection of a vehicle that traveled in lane 2 and its erroneous

detection in lane 1. The dashed line shows the set of points where the two on-times are

equal. In general, unique splashover errors tend to fall below the reference line, they have
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a shorter on-time than the actual detection. While most of the combined splashovers fall

above the reference line, having a longer on-time than the actual detection. Figure 3.4B-C

tabulates the cumulative distribution function (CDF) of the difference of on-times

between the two lanes for unique splashover and combined splashover, respectively. For

unique splashover the on-time difference ranges between -13/60 and 3/60 seconds (a

negative value indicating that the splashover is shorter than the actual pulse). About 90%

of unique splashover pulses have shorter on-times than the actual pulses. According to

the concurrent video data, the difference of on-times appear to be related to the location

of vehicles in lane 2 relative to the detection zone of lane 1: generally the closer the

vehicle is to the lane line, the more positive the difference becomes. For combined

splashover the on-time difference ranges between -6/60 and 24/60 seconds. About 90%

of combined splashover pulses in lane 1 have longer on-times than the actual pulses in

lane 2. The negative values arise when the combined splashover in lane 1 is still shorter

than the original pulse in lane 2, e.g., Figure 3.2C.

Next, the difference in rising transition times (DRTT) and the difference in falling

transition times (DFTT) between a splashover pulse in lane 1 and the valid pulse in the

vehicle's lane of travel, lane 2, are used to understand characteristics of splashover.

Figure 3.5 illustrates the various relationships between DRTT and DFTT. The plane is

divided into four regions (I to IV) with boundaries at zero seconds on both axes. The

boundary of each region is defined as follows:

Region I: DRTT > 0 and DFTT > 0,

Region II: DRTT  0 and DFTT > 0,

Region III: DRTT < 0 and DFTT  0,

Region IV: DRTT  0 and DFTT  0.

Hypothetical examples of the relationship are shown between the splashover pulse in lane

1 and the valid pulse in lane 2 for each region. One would expect most unique

splashovers from lane 2 to lane 1 to be like Figure 3.1 and fall in region IV since the lane

2 pulse starts before and ends after the lane 1 pulse, while the combined splashovers
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should fall in regions I and III. Using the data from Figure 3.4, Figure 3.6 shows the

relation of DFTT and DRTT between splashover and actual detection at station 104

eastbound for the splashover pulse in lane 1 (L1) and the valid pulse in lane 2 (L2).

Within each region the brackets tally the total number of observations of [unique

splashover, combined splashover] seen. As expected, 86% of unique splashovers (236 out

of 273) fall in region IV. The concurrent video data reveals that the unique splashover

observed in Region II occurred when the lane 2 vehicle traveled much closer to the lane

boundary with lane 1 than the vehicles observed in Region IV. A loop detector's

sensitivity is in inversely proportional to the square of the distance to the vehicle (Klein

et al., 2006). So, typically DZ1 for splashover should become larger and DZ2 for valid

vehicle detection should become smaller as a lane 2 vehicle gets closer to the boundary

with lane 1. Unique splashovers falling in region I and region III might be due in part to

lateral motion by the vehicles, though we did not test this hypothesis. Meanwhile, 82% of

combined splashovers are observed in Region I (18 out of 45) and III (19 out of 45). Not

surprisingly, the concurrent video data reveal that in for the combined splashovers in

region I a vehicle in lane 1 is followed by a vehicle in lane 2 causing splashover (e.g.,

Figure 3.3C), while in region III a vehicle in lane 2 causing splashover is followed by a

vehicle in lane 1 (e.g., Figure 3.3D). Combined splashovers in region II and region IV

usually occurred when two vehicles passed over loop detectors at roughly same time. In

free flow conditions unique splashovers are more frequently observed than combined

splashovers. In this case about 76% of all splashovers in lane 1 are bounded by the valid

pulses from the actual lane of travel, lane 2 (e.g., Figure 3.1). These results are typical of

the ground truthed stations with splashover for free flow conditions.

3.3 Development of An Algorithm to Identify Loop Detectors with Splashover

The task of detecting splashover is complicated by the fact that other events yield

similar trends in the detector data. On the one hand, all four of the relationships shown in

Figure 3.5 can arise from valid actuations in neighboring lanes if two vehicles pass side

by side, i.e., a non-error. The frequency of these events depends on the demand in each

lane. As speeds decrease due to congestion, the rate of these non-error events will go up
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simply because vehicles will reside over the loop detectors for a longer time. As a result,

the present work is intended for (predominantly) free flow conditions. Since splashover

usually arises due to a hardware fault, it should not depend on traffic conditions. So one

can use the macroscopic measures from the detectors to ascertain when conditions are

free flowing and then apply this work. On the other hand, it is not uncommon for a

vehicle changing lanes over a detector station to actuate the loop detectors in both lanes.

These lane change maneuver errors are similar to splashover errors, but are slightly

different since the vehicle is actually residing between the two lanes. In any event,

occasional splashover or lane change maneuver errors (under 1% of the actuations) are

within normal tolerance of conventional loop detector stations.

This research seeks to identify detectors exhibiting chronic splashover problems.

As seen in Figure 3.6, a splashover pulse is usually bounded by the pulse from the actual

lane of travel, e.g., in this case 86% of unique splashover and 76% of all splashovers.

This feature of splashover is used as the starting point for the splashover detection

algorithm. A pair of loop detectors in adjacent lanes is selected for testing, one loop is

arbitrarily taken as the "source lane", and for the test is assumed to provide an accurate

record of vehicle actuations in that lane. The other loop is taken as the "target lane," and

is evaluated as to whether or not it may be recording splashover pulses in response to

vehicles in the source lane. The algorithm checks each pulse in the source lane to see if it

spans a pulse in the target lane (i.e., region IV in Figure 3.5). Any time the check is true it

is considered to be a suspected splashover event. Figure 3.7 shows a hypothetical

example where indeed the pulse in the source lane, s1, spans a pulse in the target lane, t1.

The algorithm repeats the process over all pulses in the source lane for the data set (in

this study the duration of the ground truth video sequence). The roles of the lanes are

exchanged and the process is repeated, then it is repeated for every other pair of adjacent

lanes at the station.

The first two rows of Table 3.1 summarize the number of true splashovers (from

ground truth) and suspected splashovers (from the algorithm) for each pair of adjacent

lanes at station 104 eastbound. With lane 2 as source lane and lane 1 as target lane 318
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actual splashover are observed at lane 1 from vehicles in lane 2 and 240 pulses in lane 1

are labeled suspected splashover from lane 2 by the algorithm. In this case, all 240 of the

suspected splashovers turn out to be actual splashover events. But a suspected splashover

does not always correspond to an actual splashover, e.g., if two vehicles pass

simultaneously in adjacent lanes. Taking lane 1 as source lane and lane 2 as target lane

there are no actual splashover events but the algorithm found 32 suspected splashovers.

In fact all of the lane pairs had some suspected splashover events but only one lane pair

had actual splashovers.

Again, the non-splashover events that are labeled as suspected splashover arise

due to two vehicles passing in adjacent lanes. The frequency of these events depends on

the demand in the two lanes. To estimate the rate of these non-splashover events, we

make a second pass through the data. We take all of the arrivals in the source lane, shift

them by  (set to five seconds), and tally how many pulses in the target lane are spanned

by the time-shifted pulses from the source lane. These intersections cannot arise from the

given pulse splashing over. The result is called the "background non-splashover." Figure

3.7 shows that target lane pulse t3 begins within the time-shifted window from the source

lane pulse, but it is not spanned by the time-shifted pulse and so it would not contribute to

this background non-splashover. In any event, if vehicle arrivals are independent in the

two lanes and there were no splashover events, the expected number suspected

splashover and background non-splashover should be the same. The background non-

splashover is listed in the third row of Table 3.1 and the difference between suspected

splashover and the background is tabulated in the fourth row. While the difference is

closer to zero, all lane pairs are still positive. It is possible that the arrivals in adjacent

lanes are not completely independent (e.g., drivers may momentarily slow down as they

are overtaking a vehicle in an adjacent lane), but in any case, both the suspected

splashovers and the background non-splashover are random variables that will not always

cancel each other out in the absence of actual splashover events.

Since the present work seeks to identify chronic splashover, we adopt a more

liberal definition for the background non-splashover rate. Instead of requiring the entire



20

pulse in the target lane to fall within the time-shifted source lane pulse, a target lane pulse

will be counted in the background if the target pulse's rising edge is bounded by the

shifted source lane pulse (i.e., regions I and IV in Figure 3.5). So now pulse t3 in Figure

3.7 would contribute to the background non-splashover. The results for the on-going

example at station 104 are tabulated in the final two rows of Table 3.1. The liberal

definition far outnumbers the suspected splashover that arose in the three lane pairs due

to non-splashover events (negative numbers in the final row), but it does not outnumber

the true splashovers from L2 to L1. Any lane pairs that have a positive value after

subtracting the liberal background non-splashover rate are considered to be from a loop

detector with splashover.

This process is formalized in Equation (3.1). A positive S

TR  during free flow

traffic is an indicator of chronic splashover. Since the rate of two vehicles passing in

adjacent lanes simultaneously depends on demand in both lanes, the magnitude of S

TR  is

not in itself a fair measure of comparison between lanes.
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=
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S

TR  = adjusted ratio of suspected splashover between source lane (S) and target

lane (T),
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 Pij = suspected splashover of pulse j in the target lane matched to pulse i in the

source lane,

 Qij = background non-splashover of pulse j in the target lane matched to pulse i

shifted by the constant delay in the source lane,

  = constant delay for shifting a pulse in the source lane, currently set to five

seconds,

 n = total number of pulses in the source lane,

 m = total number of pulses in the target lane,

 i = i-th pulse in the source lane (i=1, 2, ... , n),

 j = j-th pulse in the target lane (j=1, 2, ... , m),

S

iRT  = i-th pulse rising transition time in source lane,

S

iFT  = i-th pulse falling transition time in source lane,

T

jRT  = j-th pulse rising transition time in target lane,

T

jFT  = j-th pulse falling transition time in target lane

3.4 Correction by Daily Median On-Time

The preceding analysis assumes that a given target and source lane have roughly

the same sensitivity level. This sensitivity depends on the hardware instillation and the

settings of the loop sensor. If the sensitivity in the target lane is significantly greater than

the source lane, it is possible to see an inversion, e.g., most unique splashovers in lane 1

from lane 2 falling in region II of Figure 3.5A. In which case the algorithm will detect the

splashover in the lane pair, but attribute it to the wrong lane. Fortunately, such extreme

cases can be detected via the median on-time test presented in Coifman (2006a) (a variant

of the mode on-time test presented in Coifman and Lee, 2006). Each on-time

measurement depends on vehicle length, vehicle speed, and the detector sensitivity.

Although the speed and length vary from vehicle to vehicle, over a 24 hour period at a
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typical detector, most of the vehicles should be free flowing and the majority should be

passenger vehicles. As a direct result, the daily median on-time should usually fall within

a small range that corresponds to the effective length of a passenger vehicle (i.e., physical

length plus detection zone) at free flow speed. The detection zone length is a function of

the detector sensitivity, so the daily median on-time will increase with the detector

sensitivity.

For instance, the on-time from a 20 ft effective length vehicle traveling at 65 mph

is 13/60 seconds and the daily median on-time is expected to be around that value.

Assuming that most effective vehicle lengths indeed fall in the 18 to 22 ft range and

drivers usually obey the posted speed limit in free flow conditions, the daily median on-

time should fall between 11/60 to 14/60 seconds at 65 mph and 13/60 to 16/60 seconds at

55 mph. If the daily median on-time falls much outside the expected range, it is indicative

of a transient event (e.g., a snowstorm) or improper loop sensitivity. Transient events can

be addressed by looking at the results from several days or avoiding results on days with

known incidents. If the location is known to have many hours of recurring congestion, the

test can be modified to exclude congested traffic (either by time of day, day of week, or

via the macroscopic data).

To correct these speed estimation errors at single loop detectors we calculate a

multiplicative correction factor individually for each loop, as follows. First, the daily

median speed is taken from speed in off-peak time periods (9a am-3 pm), and this process

is repeated for all weekdays in a month. Next, the median of the daily speeds is found.

The correction factor is then defined as the posted speed limit divided by this daily

median speed. For example, in Coifman (2006a), the median speed in lane 2 at station 26

northbound is 81 mph, so the correction factor is 0.8 (the quotient of 65 mph and 81

mph). Naturally one could use a radar gun or other measurement device to validate the

speeds more accurately, which is exactly what we did. To verify the process of generating

correction factors is valid, the corrected single loop speeds are compared against the

corresponding GPS velocity measurements from the probe vehicle runs. After applying

the correction factors, most of the single loop detectors report speeds close to the GPS



23

velocity. Ultimately the correction factors simply reflect the fact that given the detector's

sensitivity, the true effective vehicle length differs from 20 ft. Based on the correction

factors for single loop detectors, the average effective vehicle length can be estimated.

These estimated average effective vehicle lengths can improve the single loop detector

speed estimates.

At the moment we are merely concerned about assigning splashover to the correct

lane. When a detector is suspected of splashover, one should find the daily median on-

time from the source and target lanes to ensure that the apparent source lane is not

considerably more sensitive than the apparent target lane. If there is a large discrepancy,

then the splashover may be in the opposite direction than indicated by Equation 3.1. In

this study we did not observe any such extreme cases. Consider each loop at station 104

eastbound over 24 hrs. The posted speed limit is 55 mph. Daily median on-times are

14/60 seconds for lane 1, 16/60 seconds for lane 2, and 16/60 seconds for lane 3. The

slightly lower median on-time in lane 1 is due in part to the large number of shorter

pulses from the lane 2 vehicles splashing over.

3.5 Application and Results

A total of 19 directional ground truth data sets were generated in free flow

conditions for this evaluation. Four of these directional sets exhibited some degree of

actual splashover, as enumerated in Table 3.2. The remaining 15 data sets did not have

any observed splashover. The total pulses listed in Table 3.3 tally the number of pulses

recorded by the loop detector during the video data collection at the stations that

exhibited splashover, while the total vehicles tally the corresponding number of vehicles

that traveled in the lane as seen in the video. The total number of splashover events are

reported for the given lane where the vehicle was incorrectly detected (i.e., the target

lane) as well as the subtotals for unique splashover and combined splashover. The total

pulses do not always correspond to the sum of total vehicles and unique splashovers, the

remaining 106 extra pulses are due to vehicles changing lanes and being counted in both

lanes (note that all recorded pulses, including those due to lane change maneuvers, are
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included in Table 3.3). The source and target lanes giving rise to the splashover are

shown in the second to the last column. The final column shows the percentage of

splashovers in the target lane relative to total pulses in the source lane, i.e., the splashover

rate. For example, lane 3 at station 38 westbound has 115 unique splashovers and 2

combined splashovers, all of which are caused by vehicles traveling in lane 2. So this

lane has a splashover rate of 117/242.

Note that the splashover rate is relative to the total pulses rather than the total

vehicles. As noted earlier, the source lane is assumed by the algorithm to provide an

accurate record of vehicle actuations in that lane and in practice, one could not exclude

all of the extra pulses due to splashover without an independent ground truthing process.

However, if this point proves to be one of concern, one could reduce the denominator in

the splashover rate by the number of suspected splashovers seen in the source lane. In any

event, lane 1 at station 104 eastbound has the highest splashover rate (91%), and lane 2 at

station 38 westbound has the lowest non-zero splashover rate (1.2%). There was a total of

537 splashovers over the four detector stations, 473 of which (88%), are unique

splashover. So 473 out of 3,756 total pulses resulted from vehicles being counted a

second time across these four stations, i.e., 12.6% over counting. As previously

mentioned, while the combined splashover events do not impact flow, both types of

splashover will lead to an erroneous increase in occupancy.

Table 3.4 presents the results of the splashover detection algorithm (i.e., S

TR  from

Equation 3.1) applied to the loop detector data for the periods with ground truth. Of the

82 adjacent lane pairs from 56 loop detectors at 13 loop detector stations, a total of five

lane pairs returned a positive ratio of adjusted suspected splashover, S

TR . Although not

shown, the comparison of daily median on-times at 82 adjacent lane pairs verified that

there is not an extreme difference of loop sensitivity. Now employing the ground truth

data from Table 3.2, the seven lane pairs that actually exhibited splashover are shaded in

Table 3.4. The algorithm failed to identify two of the lane pairs with actual splashover as

loops with splashover, specifically, splashover in lane 2 from lane 1 at station 38

westbound and at station 41 eastbound. The algorithm correctly classified all loop
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detectors without splashover. The splashover rate from Table 3.3 is an upper bound on

the total contribution of Pij to Equation 3.1. The two lane pairs with splashover that were

missed by the algorithm had a relatively small splashover rate. On the other hand, the

flow in the target lane was significantly greater than the flow in the source lane, thereby

increasing the chance of finding a background non-splashover event. In the end, the

splashover rate was exceeded by the contribution of the liberal background non-

splashover rate, Qij. These two cases represent the threshold of "chronic splashover" that

the algorithm can detect. In contrast, lane 3 at station 56 westbound also has a low rate of

splashover but the algorithm correctly identifies this lane because the flow in the target

lane is about 20% of source lane and thus, Qij is small in this case.

As a result of this analysis, our team asked the operating agency (the Ohio

Department of Transportation) to reduce the sensitivity setting on the detectors at station

56 westbound and station 104 eastbound. A second round of ground truth data was

collected for each station after the change: 30 min at station 56 and 15 min at station 104

in free flow conditions. As discussed in Section, 4.7, no splashover events were found in

the ground truth data at either station after the change and the algorithm labeled all of the

lanes at those stations as being non-splashover.

3.6 Comparison of The Performance of Splashover Detection Algorithms

We compare the performance of three of the earlier error detection methodologies

against our algorithm using the ground truth data from Table 3 (the process was repeated

using a data from a 24 hr period selected at random and the results were similar). At each

detector: Chen and May (1987) (C&M) tabulated the percent of individual actuations

with an off-time under 15/60 seconds; Jacobson et al. (1990) (JNB) tabulated the percent

of macroscopic data (20 sec samples) outside of the acceptable thresholds; Turochy and

Smith (2000) (T&S) tabulated the percent of macroscopic data (30 sec samples) with

flow greater than 3,100 vehicles/hr; and our method (L&C) as described above. The

detectors were segregated into two groups, the seven with splashover, and the 53 without

(non-splashover). Within each group, the min, max, mean, and median values were found
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for each test. The results are shown on Figure 3.8 and are tabulated in Table 3.5. One

should not compare absolute values between methodologies since they measure different

features; rather, consider the relative values between splashover and non-splashover for a

given methodology. Only T&S and L&C have a zero mean or median for the non-

splashover detectors. But the difference between the splashover and non-splashover

detectors is small for T&S. While L&C is the only test to have a zero maximum for the

non-splashover tests. Our test exhibits the largest difference between the splashover and

non-splashover conditions using the mean. Using the median JNB exhibits a slightly

larger difference than L&C does between the two conditions, but JNB incorrectly catches

several non-splashover loop detectors. JNB also exhibits an inversion from the median

value to maximum value. These results are not surprising since, as noted previously, the

other tests were not specifically designed to identify splashover.



Figure 3.1, A hypothetical example of splashover from lane 2 to lane 1
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Figure 3.2, Hypothetical examples of the coupling effect of actual detection and splashover.
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Figure 3.3, (A) A plot of detector actuations, and (B-D) the corresponding video image at

station 104 eastbound; (B) unique splashover and (C and D) combined splashover
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Figure 3.4, (a) A scatter plot of on-times in unique splashover and combined splashover, (b)

CDF of the difference of on-time in unique splashover and (c) combined

splashover:

A)

C)B)
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Figure 3.5, The expected relationship between the difference in falling transition times and

the difference in rising transition times: (lane 1 - lane 2)

Figure 3.6, Scatter plot of a different time in rising and falling time in splashover from GTD;

Within each region the brackets tally the total number of observations of [unique

splashover, combined splashover]



?

RT1
S

Time

Source

Lane 

(S)

Target 

Lane 

(T)

FT1
S RT1

S 
+ ? FT1

S 
+ ?

RT1
T FT1

T RT3
T

s1

t3t2t1

Figure 3.7, The splashover detection algorithm to select suspected splashover and

background non-splashover.

Figure 3.8, Bar chart comparing the max, min, mean, and median results for detectors with

splashover and non-splashover from the four error detection methods. Note that

vertical scales are differ between the plots.



[ Source lane (i)  Target lane (j) ]Criteria of

background non-

splashover

St 104 EB
L1  L2 L2  L1 L2  L3 L3  L2

Actual splashover 0 318 0 0

Suspected splashover (I) 32 240 7 35

Background non-splashover (II) 10 14 6 24(A): Pulse

(I) - (II) 22 226 1 11

Background non-splashover (III) 61 60 47 74(B): Rising

transition (I) - (III) -29 180 -40 -39

Table 3.1, Application of the splashover detection algorithm to station 104 eastbound

the presence or

the absence of

splashover

Station

number
Dire-

ction

Number

of lanes
Date

Start

Time

(hh:min)

End

Time

(hh:min)

Duration

of time

(hh:min)

38 WB 4 09/09/2008 12:05 12:25 0:20

41 EB 2 09/09/2008 11:00 11:35 0:35

56 WB 3 11/21/2008 09:00 09:40 0:40

With

splashover

104 EB 3 03/17/2008 16:00 16:10 0:10

2 NB 4 03/09/2009 17:21 17:50 0:29

3 NB 4 03/17/2008 10:57 11:20 0:23

3 SB 4 04/18/2008 15:55 16:55 1:00

4 SB 4 03/17/2008 10:15 10:35 0:20

6 NB 3 04/18/2008 15:55 16:55 1:00

9 NB 3 06/05/2006 12:20 14:20 2:00

9 SB 3 06/05/2006 12:20 14:20 2:00

15 NB 3 03/10/2009 17:18 17:47 0:29

18 NB 3 03/09/2009 08:24 08:57 0:33

19 NB 3 03/17/2008 09:25 09:40 0:15

31 NB 4 11/21/2008 10:35 11:05 0:30

38 EB 3 08/29/2008 15:05 15:25 0:20

43 EB 3 09/02/2008 08:50 09:15 0:25

43 WB 3 09/02/2008 08:50 09:15 0:25

56 EB 3 09/03/2008 16:40 17:25 0:45

102 EB 3 03/10/2009 17:05 17:20 0:15

Without

splashover

104 WB 3 03/12/2009 17:00 17:18 0:18

Table 3.2, Information of the ground truth data used in this experiment



Number of splashover

Condi-

tion

Station #

(Dire-

ction)

Lane
Total

Pulses

Total

vehicles Total

Unique

splash-

over

Combined

splash-

over

Mechanism of splashover

[ Source lane (i) 

Target lane (j)]

%

splashover

rate

1 172 172 0 0 0 - -

2 242 235 2 2 0 L1  L2 1.2%

3 206 90 117 115 2 L2  L3 48.3%

38

(WB)

4 56 39 17 17 0 L3  L4 8.3%

1 336 274 53 39 14 L2  L1 10.5%41

(EB) 2 506 475 11 8 3 L1  L2 3.3%

1 345 340 0 0 0 - -

2 632 610 0 0 0 - -
56

(WB)
3 121 84 19 19 0 L2  L3 3.0%

1 441 164 318 273 45 L2  L1 91.1%

2 349 347 0 0 0 - -

Free

flow

104

(EB)
3 350 347 0 0 0 - -

Total 3,756 3,177 537 473 64

Table 3.3, Summary of the ground truth data with splashover in free flow



A ratio of adjusted suspected splashover: S

TR

[ Source lane (S)   Target lane (T) ]
Condition Station #

Dire-

ction
L1

L2

L2

L1

L2

L3

L3

L2

L3

L4

L4

L3

38 WB 0% 0% 41.3% 0% 6.8% 0%

41 EB 0% 3.6% - - - -

56 WB 0% 0% 2.2% 0% - -
Splashover

104 EB 0% 51.6% 0% 0% - -

2 NB 0% 0% 0% 0% 0.6% 0%

3 NB 0% 0% 0% 0% 0% 0%

3 SB 0% 0% 0% 0% 0% 0%

4 SB 0% 0% 0% 0% 0% 0%

6 NB 0% 0% 0% 0% - -

9 NB 0% 0% 0% 0% - -

9 SB 0% 0% 0% 0% - -

15 NB 0% 0% 0% 0% - -

18 NB 0% 0% 0% 0% - -

19 NB 0% 0% 0% 0% - -

31 NB 0% 0% 0% 0% 0.9% 0%

38 EB 0% 0% 0% 0% - -

43 EB 0% 0% 0% 0% - -

43 WB 0% 0% 0% 0% - -

56 EB 0% 0% 0% 0% - -

102 EB 0% 0% 0% 0% - -

Non-

splashover

104 WB 0% 0% 0% 0% - -

Table 3.4, Percentage of adjusted suspected splashover relative to source lane. Light shaded

cells indicate a loop detector with splashover verified from the ground truth data,

dark shaded cells are those with unexpected results. All of the non-shaded cells

represent detectors that did not exhibit splashover in the ground truth data.



Methods Data Min Max Mean Median

Splashover 0.0% 7.7% 2.8% 2.5%

Non-splashover 0.0% 5.7% 1.2% 0.7%C&M

Difference 0.0% 2.0% 1.6% 1.8%

Splashover 0.0% 11.4% 5.3% 5.4%

Non-splashover 0.0% 87.9% 5.4% 1.5%JNB

Difference 0.0% -76.6% -0.1% 3.9%

Splashover 0.0% 4.0% 0.6% 0.0%

Non-splashover 0.0% 1.6% 0.0% 0.0%T&S

Difference 0.0% 2.4% 0.5% 0.0%

Splashover 0.0% 51.6% 15.1% 3.6%

Non-splashover 0.0% 0.9% 0.0% 0.0%L&C

Difference 0.0% 50.7% 15.1% 3.6%

Table 3.5, Comparison of the max, min, mean, and median results for detectors with

splashover and non-splashover
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CHAPTER 4.  AN ALGORITHM TO IDENTIFY PULSE BREAKUP

Before addressing pulse breakups, it is important to correct several other detector

errors that might be present. If the loop detector sensitivity is significantly too high or too

low, the assumed effective vehicle length (mean or median) will yield inaccurate speed

estimates. So the daily median on-time should be tracked and be adjusted by setting the

monthly median speed to the expected value (see Section 3.4, Correction by Daily

Median On-Time). Of course splashover or other stray pulses could also look like pulse

breakup, so it is important to eliminate those errors (via the previous chapter) before

proceeding to address pulse breakup.

4.1 Problems of Pulse Breakup

In the absence of detector errors, a single vehicle is recorded as a single pulse

with a rising transition and a falling transition. Sometimes however, what should be a

single pulse from a vehicle breaks up into two or more pulses. Pulse breakup most often

occurs when multi-unit vehicles, e.g., trucks or vehicles with trailers, pass over a loop

detector (Cheevarunothai et al., 2007). An example of this error is evident in the

comparison between loop detector data and concurrent video shown in Figure 4.1, in lane

2 at a single loop detector station (station 9 northbound). Figure 4.1A shows the pulses

from all three lanes as detectors respond to vehicles. Figure 4.1B shows that the two

pulses in lane 2 result from a single truck passing over the loop detector. As illustrated in

Figure 4.1C, the on-time (OnT) denotes the period when the loop detector should have

been occupied by the truck in the absence of pulse breakup. But in the recorded data OnT

is divided into two distinct on-times (OnT1 and OnT2) and one off-time (OffT1). It is clear

from this figure that pulse breakup causes flow to be high and occupancy to be low. In
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addition, the inaccurate on-time will cause inaccurate speed estimates. Even if we were

able to estimate speed correctly (e.g., via a dual loop detector), the pulse breakup will

lead to an inaccurate estimated vehicle length.

4.2 Limitation of Previous Research

Pulse breakups in previous studies were detected using a threshold of the time gap

(Chen and May, 1987) or the time headway (Cheevarunothai et al, 2007) between two

consecutive pulses. Both methods ultimately use short off-time as the indicator of pulse

breakups. Figure 4.2, shows a histogram of off-times corresponding to pulse breakups by

lane at station 9 northbound on 6/05/2006 during 2 hrs in free flow condition. In these

data, all of the off-times arising from pulse breakup are less than 20/60 seconds. The

largest such off-times are only 5/60 second longer than the threshold of pulse breakup

used in Chen and May (1987). While short off-time might be a good indicator to find

pulse breakups, a short off-time does not always correspond to pulse breakup. A short

off-time can also arise due to tailgating and other maneuvers. Meanwhile, when traffic is

congested, the resulting off-time in a pulse breakup could easily exceed a static boundary

used to find pulse breakups, as mentioned in Chen and May (1987).

Figure 4.3 shows the CDF of off-times from the ground truth data after excluding

pulse breakups, i.e., manually verified to be true and valid off-times. If an off-time

threshold of 20/60 seconds were used to detect pulse breakups in these data, some real

off-times would be considered erroneous and attributed to pulse breakups. For example,

3% of the valid data in lane 1 will erroneously be marked as pulse breakups in this case.

The concurrent video data reveal that two consecutive pulses with short off-time are often

related to two actual vehicles.
2

The off-time arising from pulse breakup during congestion should be larger than

that during free flow. Figure 4.4 shows a CDF of off-time corresponding to pulse

                                                  

2
 Of  course there may be other detector errors that are causing the short off-times, e.g., sticking on. Whenever possible,

those external sources of error should be corrected. But they are not pulse breakup.



38

breakups by a lane at station 3 northbound during 1 hr on 4/18/2008 in congested

conditions. Off-times in pulse breakups during congestion span a much larger range than

during free flow conditions. For instance, off-time in pulse breakup at lane 2 is

distributed in a range of 4/60 to 135/60 seconds, with only 30% of pulse breakup off-

times falling below 20/60 seconds. Obviously there is a trade-off, a larger off-time

threshold should catch more pulse breakups, but more non-pulse breakups can be

mistakenly considered as pulse breakups. Simply using short off-time as an indicator of

pulse breakup is not sufficient to identify pulse breakups in free flow and congested

conditions.

4.3 Development of Algorithm to Identify Pulse Breakup for a Single Loop Detector

The pulse breakup detection algorithm is designed to identify pulse breakup from

individual vehicle actuation data. The method is based on the nature of pulse breakups

revealed from video recorded ground-truth data. Ground truth data at station 9

northbound during a 2 hr sample period is the primary data set used for this development.

After ground truthing data at this station, the following totals were observed from video

in lane 1 to lane 3: 2,372, 2,689, and 2,182 vehicles, respectively. Reviewing the detector

data, totals 306 out of 7,243 vehicles cause pulse breakups. Of these pulse breakup

events, 298 vehicles, i.e., 97% of the pulse breakups arise from LV (semi-trailer trucks),

while 8 arise from a MV (single unit truck) pulling a trailer, with a combined length

below 42 ft. All observed pulse breakups at this location consist of two pulses, and our

algorithm focuses on identifying a pulse breakup consisting of two pulses. Like the

earlier works, we begin with a simple threshold on the off-time, but then include several

comparisons of the adjacent on-times with respect to traffic condition, as follows.

4.3.1 Dynamic Off-Time

As seen above, short off-time should be a good indicator to identify pulse breakup

during free flow conditions, but the same threshold will do a poor job during congestion,

and any static threshold will have a high error rate during congestion. Pulse breakup often

arises from a semi-trailer truck, e.g., Figure 4.1. The ground clearance of a typical semi-
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trailer truck's undercarriage changes significantly over the length of the vehicle, it is

relatively close to the ground under the tractor, but then rises significantly under the

trailer, only to come close to the ground once more with the trailer's axles. Since a loop

detector’s sensitivity is inversely proportional to the square of the distance of the

vehicle’s undercarriage, loop detectors are more likely to drop out right after the tractor

passes and the ground clearance jumps up to the bottom of the trailer.

Assuming the speed of a vehicle passed over a loop detector is almost constant,

two on-times and off-time from the vehicle in free speed (Vf) and in lower speed (Vc)

could be expressed as follows:

[Free flow conditions]

ff V

EVL

V

DZD
OnT 11

1 =
+

=

ff V

EVL

V
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=
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[Congested conditions]
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Where,
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EVLi = Effective vehicle length associated with pulse i,

D1 = the physical length of the object associated with pulse 1

D2 = the physical length of the object associated with pulse 2

D3 = the physical length of the object associated with the gap

DZ = a size of detection zone,

Vf = free flow speed,

Vc = congested speed

From Equation 4.1 and Equation 4.2,
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Equation 4.3 shows the relationship of off-time in a pulse breakup between

congestion and free flow conditions. As one would expect, the off-time is greater in

congestion because speed is lower than free speed (Vf / Vc > 1). Since speeds can not be

measured at single loop detectors, the ratio of speeds can be replaced by the ratio of on-

times between both traffic conditions.

To obtain the feasible off-time of pulse breakup in congestion from Equation 4.3,

it is necessary to know free speed and off-time of a pulse breakup in free flow conditions.

First, speed from a single loop detector is estimated from effective vehicle length divided

by median on-time in the given sample period (Coifman et al., 2003). As the length and

speed cannot be measured directly at a single loop detector, effective vehicle length is

usually assumed to be some constant value, e.g., 20 ft. Of course one must first make sure
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the assumed effective vehicle length is accurate, via the correction factors in Section 3.4.

We expect median speed in off-peak time periods to usually correspond to follow free-

flow speed, for this work we use 9 hr to 15 hr. Assuming free speed is nearly constant

across vehicles, the off-time of pulse breakup in free flow just depends on the length of

the portion of the vehicle that is undetected. As shown in Figure 4.2, off-times in pulse

breakups at station 9 northbound are distributed in the range of 4/60 second to 20/60

second. So for this study we set the maximum off-time of suspected pulse breakup in free

flow to be 20/60 second (as per Figure 4.3, any larger and the threshold would start

selecting a large number of non-pulse breakup events).

Returning to Equation 4.3, the threshold off-time of a pulse breakup in congestion

is scaled up by the factor of Vf/Vc, where Vc comes from the assumed effective vehicle

length divided by the median on-time over a window of a fixed number of pulses (41

pulses in this study), centered on the current vehicle. The off-time of a pulse breakup in

congested condition is expressed by Equation 4.4. As a result, the off-time threshold of

suspected pulse breakup in congested condition just depends on the median on-time in 41

consecutive pulses, and we call it the "dynamic off-time".
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4.3.2 The Ratio of On-Times

Since many of the pulse breakups arise in the middle of semi-trailer trucks, OnT1

and OnT2 in Figure 4.1C should be proportional to the length of the tractor and the trailer

axles, respectively. After including DZ, the tractor is typically about twice as long as the
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trailer axles. Figure 4.5A shows the relation of on-times between the following pulse and

the preceding pulse for the station 9 northbound pulse breakups (recall that these are in

free flow conditions). The dashed line shows the set of points where the two on-times are

equal. In general, the preceding pulses have a longer on-time than the following pulses.

The ratio of on-times can be used to highlight the difference of on-times. The ratio is

used rather than the difference because the ratio of on-times is less constrained by traffic

conditions. From Equation 4.1, the ratio of two on-times in a pulse breakup can be

expressed via Equation 4.5. The ratio of on-times corresponds to the ratio of two effective

vehicle lengths. Assuming that the composition of the vehicle fleet does not change

significantly between free flow and congestion, the feasible boundary of on-time ratio

during free flow time periods should also be applicable during congested time periods.

1

2

1

2

1

2
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V
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EVL
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==

 (4.5)

Figure 4.5B shows the CDF of the ratio of on-times between two pulses in a pulse

breakup, i.e., OnT2/OnT1. This on-time ratio ranges between 0.12 and 1.74, for about

99% of pulse breakups, OnT2 < OnT1. But this pattern also arises when a short vehicle

follows a long vehicle. Figure 4.6A shows CDFs of the ratio from Equation 4.5 for pulse

breakups and separately for successive non-pulse breakup on-times in the ground truth

data at station 9 northbound. Choosing a threshold on the ratio at 1, 99% of pulse

breakups are correctly selected, but 50% of non-pulse breakups are erroneously marked

as pulse breakup as well. Taking the difference of the two CDFs, Figure 4.6B, we select

the ratio corresponding to the maximum difference between the two functions, i.e., 0.72.

Figure 4.7 shows a scatter plot of off-time versus on-time ratio for the pulse

breakups at station 9 northbound, showing the 8 MV separate from the LV results. The

observations to the left of the vertical delineation (at an on-time ratio of 0.72) satisfy both

the on-time ratio and off-time threshold. The on-time ratios from most of LV with pulse

breakups are less than 0.72, while on-time ratio of most MV are greater than 0.72. But the
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MVs with pulse breakup have a relatively short off-time, less than 10/60 second,
3
 in fact

the maximum off-time of a pulse breakup from a MV when on-time ratio is greater than

0.72 is 6/60 second. If a second, more restrictive threshold of 6/60 seconds off-time is

used independent of the on-time ratio, then 50% of the pulse breakups undetected by the

first two criteria (i.e., on-time ratio < 0.72 and off-time < 20/60 seconds) are caught.

Since minimum off-time from non-pulse breakups is 8/60 second, the additional

condition, on-time ratio > 0.72 and off-time <6/60 second, does not increase any false

detection of pulse breakup.

4.3.3 Ratio of Off-Time and the Preceding On-Time

Figure 4.8A shows a scatter plot of OffT1 versus OnT1. The dashed dot line shows

the set of points where the off-time and on-time are equal and the number of observations

in either side is shown on the plot. For the observed pulse breakups, the on-time of the

preceding pulse is greater than the off-time. As with the on-time ratio, the ratio of

OffT1/OnT1 just depends on the physical characteristics of the vehicle, not the traffic

condition. Figure 4.9 shows CDFs of the ratio of off-time and the preceding on-time in

pulse breakups and separately for non-pulse breakups in the ground truth data at station 9

northbound. The ratio of off-time and on-time from pulse breakups ranges between 0.12

and 1.65, while the ratio from non-pulse breakups ranges between 0.35 and 62. Only 10%

of non-pulse breakup events fall in the range of the pulse breakup events. Taking the

difference of the two CDFs, Figure 4.9B, we select the ratio corresponding to the

maximum difference between the two functions, i.e., 1.2.

4.3.4 20th Percentile Off-Time

As shown in Equation 4.4, the dynamic off-time in congestion depends on the

median on-time over 41 consecutive pulses, centered on the current vehicle. Usually

                                                  

3
 From the concurrent video, the pulse breakups from a MV pulling a trailer occurr at the trailer hitch, i.e., the smallest

cross-section of the vehicle; however, the pulse breakups from LVs occur at the end of the tractor, when the ground

clearance suddenly increased.
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speeds are stable enough for this constraint to hold, but under heavy congestion, the

median on-time over 41 consecutive pulses is sometimes larger than the local traffic

conditions would dictate (e.g., if one could measure speed or sample reliably over just 5

or 7 pulses). The larger threshold is more likely to erroneously select non-pulse breakup

events and mark them as suspected pulse breakups. To accommodate these errors, we

exploit the fact that the off-time in a pulse breakup is usually shorter than the off-time

between two consecutive vehicles. Or formalizing it in terms of a rule, the off-time in a

suspected pulse breakup should fall within the lowest 20% of off times observed in the 41

consecutive pulses. For example, Figure 4.10A shows a CDF of off-time in 41

consecutive pulses, highlighting the off-time in a pulse breakup at 19/60 seconds. This

pulse breakup falls just below the 10th percentile of the distribution. According to the

concurrent video data, the three observations with off-time shorter than 19/60 seconds are

due to tailgating. Repeating this procedure for each pulse breakup at station 9

northbound, Figure 4.10B shows the CDF of the percentile of off-time of the pulse

breakups. We can see that the off-time associated with pulse breakup is usually under the

20th percentile in the sample of 41 successive pulses. Consequently, any suspected pulse

breakup falling above the 20th percentile off-time for the given 41 pulses is discarded.

4.3.5 Maximum Vehicle Length

When a pulse breakup occurs, OnT is just the sum of OnT1, OnT2 and OffT1.

Given the estimated speed, this OnT can be converted to an estimated vehicle length in

the absence of a pulse breakup. So when we suspect a pulse breakup we check that the

estimated vehicle length from OnT is shorter than the maximum possible vehicle length.

As mentioned previously, speed from a single loop detector is estimated from effective

vehicle length divided by median on-time in the given sample period. Using dual loop

detectors, we established that few vehicles should have true effective lengths over 80 ft.

However, the estimated vehicle length could be longer than actual vehicle length because

a LVs speed in free flow condition may systematically be lower than SV free speed, e.g.,

some locations have the different speed limit for passenger cars and trucks. The median

on-time over 41 consecutive vehicles should usually be representative of the SVs, and
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faster than the actual speed of a LV. For that reason the maximum allowable estimated

vehicle length is set to 100 ft. If an estimated vehicle length in a merged on-time from a

suspected pulse breakup is greater than 100 ft, the suspicion is dropped.

4.3.6 The Pulse Breakup Detection Algorithm for a Single Loop Detector

Combining all of these tests, the flowchart of the algorithm to identify pulse

breakup from a single loop detector is shown in Figure 4.11. The process consists of six

steps. If two consecutive pulses satisfy all of the checks, these pulses are considered a

suspected pulse breakup. Otherwise, these pulses are considered to come from non-pulse

breakup. The process is repeated over all pulses in each lane.

4.4 Evaluating the Pulse Breakup Detection Algorithm

First, the algorithm from Figure 4.11 is applied to the 2 hr long development data

set from station 9 northbound and Table 4.1 summarizes the performance. The total

pulses listed in the table tallies the number of pulses recorded by the detector during the

video data collection. Actual pulse breakup tallies the pulse breakup verified by the

ground truth data, while suspected pulse breakup the events that the algorithm suspects as

being pulse breakups. The final three columns are generated by comparing the individual

suspected pulse breakups against the actual pulse breakups. Where "Success" counts the

number of times that the algorithm correctly caught an actual pulse breakup, while

"False" counts the number of times that the algorithm erroneously labeled a non-pulse

breakup as a suspected pulse breakup. Any actual pulse breakups that were not included

in the "Success" column are counted in the "Failure" column, i.e., the algorithm failed to

catch the given pulse breakup. The algorithm correctly identifies 295 out of 306 actual

pulse breakups (96%) and it missed 11 actual pulse breakups (4%). Three suspected pulse

breakups are false errors since they do not correspond to actual pulse breakups. Two of

the three false errors were due to tailgating. The other false error is due to a lane changing

maneuver.
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4.4.1 Free Flow Condition

Moving now to the test data, Table 4.2 shows the ground truthed data sets

recorded during free flow conditions. The data are sorted by those sets with and without

pulse breakup (based on the ground truth data reduction). The data include 8 hr 20 min

from 10 directional locations with pulse breakup (including the one development set) and

5 hr and 12 min from 10 locations without pulse breakup. None of the locations with

pulse breakup suffered from splashover, but four of the locations without pulse breakup

did, as shown with an asterisk in the station number column. Much as was done for the

development set, in Table 4.1 all of the data sets from Table 4.2 were used to evaluate the

performance of the pulse breakup algorithm for a single loop detector. The performance

of the algorithm during free flow conditions is summarized in Table 4.3. The non-pulse

breakup data are shown combined, and then repeated a second time, split between

splashover and non-splashover stations. Detailed results from the stations with pulse

breakup are presented in Table 4.4 and for stations without pulse breakup in Table 4.5.

From Table 4.3, the algorithm correctly catches 683 out of 722 pulse breakups (94.6%),

thus 39 pulse breakups are not caught by our algorithm. From all of the data (i.e., both

with and without pulse breakup), 76 out of 45,197 pulses (0.17%) are erroneously marked

as suspected pulse breakup.

The last three columns of Tables 4.3-4.5 tally the underlying reason whenever two

valid consecutive pulses were erroneously marked as a suspected pulse breakup, i.e., a

false error. As one might expect, "Tailgating" indicates two vehicles pass with a very

small headway, while lane change maneuver ("LCM") indicates that at least one of the

two pulses is generated from a vehicle changing lanes over the given loop detector.

Finally, "Splashover" indicates that one of the two pulses was due to a splashover error

from an adjacent lane (as per the preceding chapter). Overall the false errors due to

splashover account for 29 out of 76 (38%). At the four locations with splashover,

splashover is a dominant cause of false error, about 67% (29 out of 43). All of the

stations and lanes exhibiting splashover in this set were previously labeled as stations
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with splashover in Table 3.4. If a loop detector with splashover can be fixed, obviously

the false errors due to splashover will be reduced.

4.4.2 Congested Conditions

Now moving to the more challenging congested conditions, Table 4.6 shows the

ground truthed data sets recorded during congested conditions. Like the free flow

conditions, the data are sorted by those sets with and without pulse breakup. The data

include 2 hr 15 min from 4 directional locations with pulse breakup and 2 hr and 21 min

from 5 locations without pulse breakup. None of the locations with pulse breakup

suffered from splashover, but three of the locations without pulse breakup did, as shown

with an asterisk in the station number column. The time series of speed from these

locations is presented in Appendix B. The performance of the algorithm during congested

conditions is summarized in Table 4.7. Once more the non-pulse breakup data are shown

combined, and then repeated a second time, split between splashover and non-splashover

stations. Detailed results from the stations with pulse breakup are presented in Table 4.8

and for stations without pulse breakup in Table 4.9. From Table 4.7, the algorithm

correctly catches 157 out of 169 pulse breakups (92.8%), thus 12 pulse breakups are not

caught by our algorithm. From all of the data (i.e., both with and without pulse breakup),

180 out of 20,576 pulses (0.87%) are erroneously marked as suspected pulse breakup.

Overall the false errors due to splashover now account for only 29 out of 180 (16%).

Compared to the performance of the algorithm in free flow condition, the success rate has

dropped by almost 2%, but remains above 92% and the false alarm rate has increased by

a factor of 5, but remains below 1%.

4.5 Sensitivity of the Parameters of Variables of the Algorithm

There are several parameters in the algorithm to identify pulse breakup in single

loop detector data that were derived from one detector station using only a 2 hr long

sample. The preceding results are based on the assumption that the nature of pulse

breakups observed at the one location is similar to all of the detector stations. While it is

not possible to test stations for which we do not have data, the assumption will be
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examined using the data from the evaluation set. This section examines the optimal

threshold for the ratio of on-times between two pulses and the optimal threshold for the

ratio of off-time and the preceding on-time in the algorithm, repeating the analysis from

Figures 4.6 and 4.9, but now using the entire free flow evaluation data set from Table 4.2

(excluding station 9 northbound, which was used for development).

First the on-time ratio threshold is evaluated, holing the other parameters

constant. The on-time ratio is stepped from 0.1 to 1.1 at increments of 0.01 in this

evaluation. The ratio is also set to infinity, i.e., the results of the algorithm without the

process of on-time ratio, and the result is plotted on the abscissa of 5. Figure 4.12 shows

the evolution of the false error, failure error and sum of two errors. In general, as on-time

ratio increases, false error increases, but failure error decreases. The sum of the two is

minimized when the on-time ratio threshold is between 0.71 and 0.76 (all of the tested

values except 0.74). The original on-time ratio, 0.72, falls within this range.

Second the ratio of off-time and preceding on-time is evaluated, holing the other

parameters constant. The ratio is stepped from 0 to 1.5 at increments of 0.1 in this

evaluation. The ratio is also set to infinity, i.e., the results of the algorithm without the

process of off-time ratio, and the result is plotted on the abscissa of 36,000. Figure 4.13

shows the evolution of the false error, failure error and sum of two errors. In general, as

off-time ratio increases, false error increases, but failure error decreases. The sum of the

two is minimized when the off-time ratio threshold is between 1.2 and 1.4. The original

off-time ratio, 1.2, falls within this range.

Finally, varying both the on-time and off-time ratio thresholds, Figure 4.14 shows

the resulting performance. The off-time ratio is varied from 0.7 to 1.5 at increments of

0.1, separated by the bold vertical dashed lines. Between each pair of dashed lines, the

on-time ratio is varied between 0.67 and 0.76 at increments of 0.01. In total 150

combinations are tested, 15 values of the on-time ratio threshold and 10 values of the off-

time ratio threshold. The sum of the two errors is minimized when the off-time ratio

threshold is between 1.3 and 1.4 when the on-time ratio is 0.71. However, the original

thresholds of 1.2 and 0.72 yield a performance that has just one more error than the



49

optimal values. These results indicate that the calibration from one location transferable

to the other locations in this study. If such microscopic event data become available from

other metropolitan areas, it would be advisable to test the calibration on those facilities as

well.

4.6 Comparison of the Performance of Pulse Breakup Detection Algorithm

We compared the performance of two earlier pulse breakup detection

methodologies against our algorithm using the data underlying Table 4.2 and 4.6. In

previous studies, Chen and May (1987) (C&M) used a threshold of the time gap, while

Cheevarunothai et al. (2007) (CYN) used a threshold of the time headway. Next, our

pulse breakup detection algorithm (L&C) is applied to the loop detectors. The

performance of each test is evaluated by a number of success, false, and failure, as shown

in Table 4.10. Overall, our algorithm exhibits the lowest rate of false alarms and failures

than the two previous methods, and it catches more of the actual pulse break up events.

4.7 Field Testing the Results

Working with ODOT, we adjusted the detector settings at four detector stations

and we were successful in eliminating the chronic detector errors at most of these

stations. If these results are typical, the improved detector calibration enabled by our

research could lead to a very inexpensive means to improve the quality of loop detector

data at existing stations. We selected two stations with significant splashover events

(based on the previous chapter) and two stations with significant pulse breakup problems

(based on this chapter). ODOT engineers went to the field and turned the detector

sensitivity down at the stations with splashover and up at the stations with pulse breakup.

While most loop detector sensors have at least five sensitivity levels, often there is no

clear guidance in which level is correct for the particular location. This work seeks to

provide such guidance.

Table 4.11 shows the sensitivity levels before and after the change, as well as the

date of the change. At which point another round of concurrent video and loop detector

data were collected, as enumerated in Table 4.12. Table 4.13 shows the detector
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performance by lane and Table 4.14 shows the performance by station, before and after,

based on the ground truth.
4
 Note that all of the existing problems were solved, i.e., we

resolved splashover at the stations with splashover and pulse breakup at stations with

pulse breakup. However, at one detector we overcompensated and went from suffering

from pulse breakup to suffering from splashover, the only errors seen in the after set.

Next, applying our detection algorithms, Table 4.15 shows that the splashover

detection algorithm correctly found one and only one detector with splashover in the set.

the one lane  Table 4.16 shows that the pulse breakup algorithm had no failures (though it

was infeasible to do so since there were no errors to miss) and had a false alarm rate

under 0.5%, comparable to our results in Table 4.10 for free flow, non-pulse breakup

case.

                                                  

4
 Note that we did not use the same sample size before and after. The number of vehicles are enumerated here, see

Table 3.2, 4.2 and 4.12 for the filming durations.
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Figure 4.1, (a) A plot of detector actuations with pulse break-up over a short time period at

station 9 northbound, (b) the corresponding video image at station 9 northbound

and (c) anatomy of the pulse breakup
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Figure 4.2, Frequency plot for off-time corresponding to pulse breakup in each lane at station

9 northbound on 6/05/2006 during free flow conditions. Maximum observed off-

time from pulse breakup is 20/60 seconds.
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Figure 4.3, Cumulative density function (CDF) of off-times from ground truth data excluding

pulse breakups. (a) shows off-time distribution on a large vertical scale while (b)

repeats the data on a smaller scale.
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Figure 4.4, CDF of off-time from pulse breakups by lane at station 3 northbound in

congestion on (a) a large horizontal scale (b) repeats the data on a smaller scale
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Figure 4.5, (a) A scatter plot of on-times between two pulses in pulse breakup, (b)

Cumulative distribution function of on-time ratio in pulse breakups
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Figure 4.6, (a) CDF of on-time ratio from pulse breakup and from non-pulse breakup (b) the

difference of the two functions in a range of on-time ratio from 0 to 2.5
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Figure 4.7, Scatter plot of off-time ratio versus on-time ratio in pulse breakup
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Figure 4.8, A scatter plot of off-time and preceding on-time of pulse breakups at station 9

northbound



Figure 4.9, (a) CDF of off-time ratio from pulse breakup and from non-pulse breakup (b) the

difference of the two functions.
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Figure 4.10, (a)  CDF of off-time in 41 consecutive pulses in lane 2, including an actual pulse

breakup with off of 18.5/60 seconds, falling at the 10th percentile. (b) A plot of

the corresponding off-time percentiles from each of the actual pulse breakups at

station 9 northbound
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Figure 4.11, A flowchart of the algorithm to identify pulse breakup from a single loop detector
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Figure 4.12, Sensitivity analysis of the algorithm performance relative to the on-time ratio

threshold
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Figure 4.13, Sensitivity analysis of the algorithm performance relative to the off-time ratio

threshold



Figure 4.14, Sensitivity analysis of the algorithm performance relative to the on-time ratio

threshold and off-time ratio threshold combined



Performance
Station Num

(Direction)

Lane

number

Total

pulses

Actual

pulse

breakup

Suspected

pulse

breakup Success False Failure

1 2,386 6 8 6 2 0

2 2,900 208 200 200 0 8
9

(NB)
3 2,277 92 90 89 1 3

Total 7,563 306 298 295 3 11

Table 4.1, The performance of the proposed algorithm to identify pulse breakup in free flow

condition at station 9 northbound in 2hr sample data



the presence or

the absence of

pulse breakup

Station

number

Dire-

ction

Number

of lanes
Date

Start Time

(hh:min)

End Time

(hh:min)

Duration

of time

(hh:min)

3 NB 4 03/17/2008 10:57 11:20 0:23

3 SB 4 04/18/2008 15:55 16:55 1:00

4 NB 4 09/09/2008 16:55 17:15 0:20

4 SB 4 03/17/2008 10:15 10:35 0:20

6 NB 3 04/18/2008 15:55 16:55 1:00

9 NB 3 06/05/2006 12:20 14:20 2:00

9 SB 3 06/05/2006 12:20 14:20 2:00

15 NB 3 03/10/2009 17:18 17:47 0:29

18 NB 3 03/09/2009 08:24 08:57 0:33

With

pulse breakup

19 NB 3 03/17/2008 09:25 09:40 0:15

2 NB 4 03/09/2009 17:21 17:50 0:29

31 NB 4 11/21/2008 10:35 11:05 0:30

38 EB 3 08/29/2008 15:05 15:25 0:20

38* WB 4 09/09/2008 12:05 12:25 0:20

41* EB 2 09/09/2008 11:00 11:35 0:35

43 EB 3 09/02/2008 8:50 9:15 0:25

43 WB 3 09/02/2008 8:50 9:15 0:25

56 EB 3 09/03/2008 16:40 17:25 0:45

56* WB 3 11/21/2008 9:00 9:40 0:40

102 EB 3 03/10/2009 17:05 17:20 0:15

104* EB 3 03/17/2008 16:00 16:10 0:10

Without

pulse breakup

104 WB 3 03/12/2009 17:00 17:18 0:18

Table 4.2, Data information of the ground truth data with free flow conditions, total recorded

time of video data from locations with pulse breakup is 500 min and 312 min for

the locations without pulse breakup. Stations with splashover indicated with "*"



During free flow

condition
Performance Reason of False

Data

Total

pulses

Actual

PBU

Suspected

PBU
Success False Failure Tail-gating LCM

Splash-

over

with pulse breakup 34,401 722 699 683 16 39 12 4 0

without pulse

breakup
13,304 - 67 - 67 - 15 23 29

with splashover 3,758 - 43 - 43 - 7 7 29

without splashover 9,546 - 24 - 24 - 8 16 0

Total 47,705 722 766 683 83 39 27 27 29

Table 4.3, Summary of the performance of pulse breakup’s algorithm for a single loop

detector during free flow conditions.



Performance Reason of False

Date

St #

(Direc-

tion)

Lane
Total

vehicles

Actual

PBU

Suspected

PBU Success False Failure Tail-gating LCM
Splash-

over

1 310 6 6 6 0 0 - - -

2 420 23 21 21 0 2 - - -

3 359 16 15 14 1 2 1 0 0
03/17/08

3

(NB)

4 168 2 2 2 0 0 - - -

1 995 1 2 1 1 0 1 0 0

2 1,806 9 9 9 0 0 - - -

3 1,537 4 4 4 0 0 - - -
04/18/08

3

(SB)

4 1,139 2 3 2 1 0 1 0 0

3 619 10 10 9 1 1 0 1 0
09/09/08

4

(NB) 4 124 1 0 0 0 1 - - -

1 225 0 0 0 0 0 - - -

2 523 19 18 18 0 1 - - -

3 533 21 15 15 0 6 - - -
03/17/08

4

(SB)

4 83 1 0 0 0 1 - - -

1 2,249 26 25 25 0 1 - - -

2 1,962 58 55 55 0 3 - - -04/18/08
6

(NB)
3 1,747 8 9 8 1 0 0 1 0

1 2,386 6 8 6 2 0 1 1 0

2 2,900 208 200 200 0 8 - - -06/05/06
9

(NB)
3 2,277 92 90 89 1 3 1 0 0

1 2,434 2 7 2 5 0 4 1 0

2 2,964 21 22 20 2 1 2 0 006/05/06
9

(SB)
3 2,288 107 106 105 1 2 1 0 0

1 1,173 5 3 3 0 2 - - -

2 940 24 23 23 0 1 - - -03/10/09
15

(NB)
3 899 11 8 8 0 3 - - -

1 197 0 0 0 0 0 - - -

2 227 13 13 13 0 0 - - -03/09/09
18

(NB)
3 140 3 3 3 0 0 - - -

1 186 0 0 0 0 0 - - -

2 297 13 13 13 0 0 - - -03/17/08
19

(NB)
3 294 10 9 9 0 1 - - -

Total 34,401 722 699 683 16 39
12

(75%)

4

(25%)

0

(0%)

Table 4.4, Summary of the performance of pulse breakup’s algorithm for a single loop

detector from the data with pulse breakup during free flow conditions.



Performance Reason of False

Date
St #

(Direc-

tion)

Lane
Total

pulses

Actual

PBU

Suspected

PBU
Success False Failure Tail-gating LCM

Splash-

over

1 628 0 2 0 2 0 1 1 0

2 642 0 1 0 1 0 0 1 0

3 526 0 1 0 1 0 0 1 0
03/09/2009

2

(NB)

4 45 0 0 0 0 0 - - -

1 124 0 0 0 0 0 - - -

2 296 0 0 0 0 0 - - -

3 220 0 3 0 3 0 1 2 0
11/21/2008

31

(NB)

4 27 0 0 0 0 0 - - -

1 355 0 1 0 1 0 1 0 0

2 331 0 1 0 1 0 1 0 08/29/2008
38

(EB)
3 164 0 1 0 1 0 1 0 0

1 172 0 0 0 0 0 - - -

2 242 0 1 0 1 0 1 0 0

3 206 0 9 0 9 0 0 0 9
9/9/2008

38

(WB)

4 56 0 1 0 1 0 0 0 1

1 337 0 7 0 7 0 1 0 6
9/9/2008

41

(EB) 2 507 0 3 0 3 0 3 0 0

1 262 0 1 0 1 0 0 1 0

2 419 0 0 0 0 0 - - -9/2/2008
43

(EB)
3 384 0 1 0 1 0 0 1 0

1 500 0 0 0 0 0 - - -

2 590 0 3 0 3 0 0 3 09/2/2008
43

(WB)
3 444 0 2 0 2 0 0 2 0

1 596 0 1 0 1 0 0 1 0

2 771 0 4 0 4 0 3 1 09/3/2008
56

(EB)
3 322 0 0 0 0 0 - - -

1 345 0 0 0 0 0 - - -

2 632 0 5 0 5 0 0 5 011/21/2008
56

(WB)
3 121 0 1 0 1 0 0 0 1

1 189 0 1 0 1 0 0 1 0

2 320 0 1 0 1 0 0 1 03/10/2009
102

(EB)
3 322 0 0 0 0 0 - - -

1 441 0 12 0 12 0 0 0 12

2 349 0 1 0 1 0 0 1 03/17/2008
104

(EB)
3 350 0 3 0 3 0 2 1 0

1 359 0 0 0 0 0 - - -

2 415 0 0 0 0 0 - - -3/12/2009
104

(WB)
3 295 0 0 0 0 0 - - -

Total 13,304 0 67 0 67 0
15

(22%)

23

(34%)

29

(43%)

Table 4.5, Summary of the performance of pulse breakup’s algorithm for a single loop

detector from the data without pulse breakup during free flow conditions.



the presence or

the absence of

pulse breakup

Date
Station

number
Direction

Start Time

(hh:min)

End Time

(hh:min)

Duration

of time

(hh:min)

03/21/2008 3 NB 16:35 16:50 0:15

04/18/2008 3 NB 15:55 16:55 1:00

09/09/2008 4 NB 17:15 17:55 0:40

With

pulse breakup

04/07/2008 9 SB 07:50 08:10 0:20

03/12/2009 41* EB 16:40 17:06 0:26

03/12/2009 43 EB 17:07 17:48 0:41

09/03/2008 56* WB 16:40 17:25 0:45

03/10/2009 102 EB 16:46 17:05 0:19

Without

pulse breakup

03/17/2008 104* EB 16:10 16:20 0:10

Table 4.6, Data information of the ground truth data with congestion.  Stations with

splashover indicated with "*"

During congestion Performance Reason of False

Data

Total

pulses

Actual

PBU

Suspected

PBU Success False Failure Tail-gating LCM
Splash-

over

with pulse breakup 10,721 169 181 157 24 12 24 0 0

without pulse

breakup
9,855 - 156 - 156 - 105 22 29

with splashover 5,177 - 98 - 98 - 51 18 29

without splashover 4,678 - 58 - 58 - 54 4 0

Total 20,576 169 337 157 180 12 129 22 29

Table 4.7, Summary of the performance of pulse breakup’s algorithm for a single loop

detector during congestion.



Performance Reason of False

Date

St #

(Direc-

tion)

Lane
Total

vehicles

Actual

PBU

Suspected

PBU
Success False Failure Tail-gating LCM

Splash-

over

1 404 4 2 2 0 2 - - -

2 369 6 6 6 0 0 - - -

3 387 10 10 10 0 0 - - -
03/21/08

3

(NB)

4 208 3 3 3 0 0 - - -

1 1789 36 43 36 7 0 7 0 0

2 1619 47 48 44 4 3 4 0 0

3 1482 29 30 25 5 4 5 0 0
04/18/08

3

(NB)

4 920 4 5 3 2 1 2 0 0

3 1201 12 11 10 1 2 1 0 0
09/09/08

4

(NB) 4 298 1 1 1 0 0 - - -

1 758 0 2 0 2 0 2 0 0

2 704 3 6 3 3 0 3 0 004/07/08
9

(SB)
3 582 14 14 14 0 0 - - -

Total 10,721 169 181 157 24 12
24

(100%)

0

(0%)

0

(0%)

Table 4.8, Summary of the performance of the pulse breakup algorithm to the congested

ground truth data at stations with pulse breakup. During congestion, the

performance of our algorithm degrades, the rates of false and failure errors

increased. All false errors are observed from the interaction of two actual

vehicles’ movement.



Performance Reason of False

Date

St #

(Direc-

tion)

Lane
Total

vehicles

Actual

PBU

Suspected

PBU
Success False Failure Tail-gating LCM

Splash-

over

1 935 0 32 0 32 0 11 6 15
03/12/09

41

(EB) 2 733 0 24 0 24 0 23 1 0

1 1,417 0 15 0 15 0 13 2 0

2 1,322 0 27 0 27 0 25 2 003/12/09
43

(EB)
3 1,174 0 14 0 14 0 14 0 0

1 1,350 0 7 0 7 0 5 2 0

2 1,171 0 16 0 16 0 7 9 009/03/08
56

(WB)
3 329 0 3 0 3 0 1 0 2

1 171 0 0 0 0 0 - - -

2 286 0 0 0 0 0 - - -03/10/09
102

(EB)
3 308 0 2 0 2 0 2 0 0

1 308 0 12 0 12 0 0 0 12

2 204 0 0 0 0 0 - - -03/17/08
104

(EB)
3 147 0 4 0 4 0 4 0 0

Total 9,855 0 156 0 156 0
105

(67%)

22

(14%)

29

(19%)

Table 4.9, Summary of the performance of the pulse breakup algorithm to the congested

ground truth data at stations without pulse breakup. In this case, we can see

relatively high number of tailgating causing false error.



Performance
Condition Method

Total

pulses

Actual

PBU

Suspected

PBU Success False Failure

C&M 636 521 115 201

CYN 1,769 546 1,223 176

Free flow

&

Pulse breakup L&C

34,401 722

699 683 16 39

C&M 55 49 6 120

CYN 54 14 40 155

Congestion

&

Pulse breakup L&C

10,721 169

181 157 24 12

C&M 159 - 159 -

CYN 509 - 509 -

Free flow

&

Non-pulse

breakup
L&C

13,304 0

67 - 67 -

C&M 127 - 127 -

CYN 104 - 104 -

Congestion

&

Non-pulse

breakup
L&C

9,855 0

156 - 156 -

C&M 977 570 407 321

CYN 2,436 560 1,876 331Overall

L&C

68,281 891

1,103 840 263 51

Table 4.10, Comparison of our proposed methodsagainst previous methods for detecting pulse

breakup. Our method has the smallest false error and failure error.



Date

adjusting

sensitivity

Station

number
Direction

Lane

number

Old Sensitivity

Level

New Sensitivity

Level

1 Normal High

2 Normal High

3 Normal High
NB

4 Normal High

1 Normal High

2 Normal High

3 Normal High

3

SB

4 Normal High

1 Low High

2 Low HighNB

3 Low High

1 Low High

2 Low High

6/9/2009

9

SB

3 Low High

56 WB 3 Normal Low
6/10/2009

104 EB 1 High Low

Table 4.11, Detector sensitivity of 16 loop detectors at four detector stations.

Station

number
Direction

Number of

lanes
Date

Start Time

(hh:min)

End Time

(hh:min)

Duration of time

(hh:min)

NB 4 06/17/2009 10:21 10:51 0:30
3

SB 4 06/17/2009 10:21 10:51 0:30

NB 3 06/17/2009 10:05 10:41 0:36
9

SB 3 06/17/2009 10:05 10:41 0:36

56 WB 3 06/17/2009 09:33 10:03 0:30

104 EB 3 06/26/2009 13:14 13:29 0:15

Table 4.12, Detail information of video data recorded for examination of detector sensitivity.

All six directional locations were recorded during free flow conditions.



Before After

Station

number

Dire-

ction

Lane

number
Total

pulses

Splash-

over

Pulse

breakup

Total

pulses

Splash-

over

Pulse

breakup

Date

["Before" data,

"After" data]

1 310 0 6 479 0 0

2 420 0 23 687 0 0

3 359 0 16 595 0 0
3 NB

4 168 0 2 324 0 0

[03/17/2008,

06/17/2009]

1 995 0 1 409 0 0

2 1,806 0 9 831 0 0

3 1,537 0 4 611 0 0
3 SB

4 1,139 0 2 397 0 0

[04/18/2008,

06/17/2009]

1 2,386 0 6 657 0 0

2 2,900 0 208 784 0 09 NB

3 2,277 0 92 624 0 0

[06/05/2006,

06/17/2008]

1 2,434 0 2 803 68 0

2 2,964 0 21 908 0 09 SB

3 2,288 0 107 673 0 0

[06/05/2006,

06/17/2009]

1* 345 0 0 234 0 0

2* 632 0 0 446 0 056 WB

3 121 19 0 70 0 0

[11/21/2008,

06/17/2009]

1 441 318 0 136 0 0

2* 349 0 0 435 0 0104 EB

3* 350 0 0 401 0 0

[03/17/2008,

06/26/2009]

Total 24,221 337 499 10,504 68 0

Table 4.13, Performance during free flow conditions before and after the detector sensitivity

change. The four detectors that were not changed are shown with *.

Before After
Station

number

Dire-

ction Total

pulses

Splash-

over

Pulse

breakup

Total

pulses

Splash-

over

Pulse

breakup

NB 1,257 0 47 2,085 0 0
3

SB 5,477 0 16 2,248 0 0

NB 7,563 0 306 2,065 0 0
9

SB 7,686 0 130 2,384 68 0

56 WB 1,098 19 0 750 0 0

104 EB 1,140 318 0 972 0 0

Total 24,221 337 499 10,504 68 0

Table 4.14, Comparison of before and after study across all lanes



A ratio of adjusted suspected splashover: S

TR

[ Source lane (S)    Target lane (T) ]
Station

number
Direction L1 

L2

L2 
L1

L2 
L3

L3 
L2

L3 
L4

L4 
L3

3 NB 0% 0% 0% 0% 0% 0%

3 SB 0% 0% 0% 0% 0% 0%

9 NB 0% 0% 0% 0% - -

9 SB 0% 0.2% 0% 0% - -

56 WB 0% 0% 0% 0% - -

104 EB 0% 0% 0% 0% - -

Table 4.15, Percentage of adjusted suspected splashover relative to source lane from stations

where the detector sensitivity was changed.

Performance Reason of False;St #

(Direc-

Tion)

Lane
Total

Pulses

Actual

PBU

Suspected

PBU Success False Failure
Tail-

gating
LCM

Splash-

over

%

False

1 479 0 1 0 1 0 1 0 0 0.2%

2 687 0 2 0 2 0 2 0 0 0.3%

3 595 0 1 0 1 0 0 1 0 0.2%

3

(NB)

4 324 0 0 0 0 0 - - - 0.0%

1 409 0 0 0 0 0 - - - 0.0%

2 831 0 0 0 0 0 - - - 0.0%

3 611 0 3 0 3 0 0 3 0 0.5%

3

(SB)

4 397 0 2 0 2 0 2 0 0 0.5%

1 657 0 2 0 2 0 0 2 0 0.3%

2 784 0 1 0 1 0 1 0 0 0.1%
9

(NB)
3 624 0 1 0 1 0 1 0 0 0.2%

1 803 0 9 0 9 0 3 0 6 1.1%

2 908 0 4 0 4 0 3 1 0 0.4%
9

(SB)
3 673 0 1 0 1 0 1 0 0 0.1%

1 234 0 0 0 0 0 - - - 0.0%

2 446 0 2 0 2 0 1 1 0 0.4%
56

(WB)
3 70 0 0 0 0 0 - - - 0.0%

1 136 0 0 0 0 0 - - - 0.0%

2 435 0 1 0 1 0 0 1 0 0.2%
104

(EB)
3 401 0 2 0 2 0 2 0 0 0.5%

Total 10,504 0 32 0 32 0 17 9 6 0.3%

Table 4.16, Summary of the pulse breakup detection algorithm performance on stations where

the detector sensitivity was changed.
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CHAPTER 5.  DROPOUT WITHOUT RETURN- A PILOT STUDY

Each on-time measurement, i.e., the duration during which a vehicle occupies a

loop detector, depends on: vehicle length, vehicle speed, and the detector sensitivity.

However, detector errors can cause the on-time to be longer or shorter than expected. For

example, pulse breakup splits a vehicle's pulse into several shorter on-times. An extreme

case occurs when the detector without return, e.g., when a semi-trailer truck passes the

detector turns off at the end of the tractor, but instead of turning back on for the trailer

axles (as it would in pulse breakup), the detector stays off. Or more generally, dropout

without return indicates that a loop detector recognizes a part of a vehicle passed over a

loop detector but it did not recognize all of the vehicle. Figure 5.1 shows such an

example, using a video frame and concurrent loop detector data when a long truck

entered the detection zone at lane 2 at station 2 northbound on 3/09/2009. This example

clearly shows that on-time of the long vehicle is too short, 4/60 seconds, which is even

shorter on-time than the on-time from the passenger car immediately before, 8/60

seconds.

After ground truthing 29min of data at station 2 northbound on 3/09/2009, the

following totals and bracketed subtotals, [short vehicles, middle vehicles, long vehicles],

were observed from video from lane 1 to lane 4: 623 [608, 8, 7], 638 [604, 5, 29], 519

[505, 3, 11], and 38 vehicles [37, 1, 0], respectively. Figure 5.2 shows the on-time CDFs

by vehicle class for the four lanes at station 2 northbound. Note that no long vehicles are

observed at lane 4. For all three classes the distribution of on-times in lane 2 is to the left

of the corresponding distribution from the other lanes. The biggest difference of on-times

between lane 2 and the other lanes is observed from long vehicles. While all three classes

of vehicles exhibited shorter on-times in lane 2 than the other lanes, the difference is
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severe for the long vehicles. This lane has a chronic problem of dropping out without

return. All long vehicles observed at lane 2 have on-times less than 18/60 seconds, the

distribution appears to be similar to the distribution of on-times from short vehicles. This

fact and the absence of short off times makes it particularly difficult to differentiate these

long vehicle dropouts without return from the short vehicle measurements using data

from a single station.

We bring up this problem here to make clear that there are other detector errors

that our tests do not catch. Obviously extreme dropouts without return would bring the

on-times of all vehicles down (e.g., if the detectors were inadvertently set to pulse mode).

For the present work we focus on the next level up, and observe that long vehicles should

be the ones that are most susceptible to this error, e.g., Figure 5.2. Due to the difficulties

distinguishing between long vehicles that dropped out and short vehicles that were

measured correctly, we only seek to catch chronic problems (e.g., at least 30% of the long

vehicles are impacted at a given station). Broadly, the flow of long vehicles should be

similar between successive stations. But that approach will only help if it is known that

one of the stations does not suffer from dropout without return. So borrowing vehicle

reidentification ideas from Coifman (1998) and reversing the process, a vehicle observed

at the upstream (or downstream) detector station must be seen at the downstream (or

upstream) detector station offset by the travel time unless the vehicle exits (or enters) in

between the stations. A vehicle's travel time between the two locations depend on its

speed. Limiting this work to free flow conditions, we assume a range link speeds between

55 mph and 75 mph, i.e., speed limit (65 mph) ±10 mph, the free flow travel times can be

estimated from the two bounding values of speed over the link. Consequently, most

vehicles detected in upstream (or downstream) station would have a match in one of the

lanes of the downstream (or upstream) station within a time window of reasonable free

flow travel times. In this respect long vehicles have two additional desirable properties:

because they typically pass less frequently than short vehicles there are fewer possibilities

to consider and their longer range makes them easier to differentiate from one another
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Obviously if there is a queue between the detector stations that does not reach

either station the travel time will be larger than the assumed free flow travel time. But

such conditions will be transient. This work is intended to be used over a longer period,

e.g., at least a day, in which case it can reasonably be assumed that most of the time that

both of the detectors stations indicate locally free flowing traffic that the entire link

spanning the two stations is freely flowing. In fact this approach is complementary with

the vehicle reidentification techniques presented Coifman (2003), if long vehicles are

normally seen between successive stations within the free flow travel time window, the

sudden absence can be used to detect the presence of queuing before it reaches either

detector station.

Only long vehicles and locally free flow conditions at the pair of detector stations

are considered in the following analysis. We selected all of the long vehicles from the

ground truth video data at station 3 northbound on 6/17/2009, and then used the station 2

detector data to try to find the corresponding vehicles. For station 2 (and whenever one

does not have video ground truth) in this proof of concept study we sought to bypass the

confounding interaction between vehicle length and speed have on on-time at a single

loop detector, so we used a simple threshold: on-time in excess of 35/60 seconds to

defines a long vehicle.

Figure 5.3 shows a schematic around station 2 and station 3 northbound. Since

there is an on-ramp between station 2 and station 3 northbound, flows at station 3

northbound should be greater or equal to flows at station 2 northbound. The ground truth

data include 30 min sample data, 10:21 to 10:51 and traffic was free flowing. At station 3

the following totals of long vehicles are observed from video from lane 1 to lane 4: 5, 57,

48, and 3 vehicles, respectively. The free flow travel times between station 2 and station

3 are between 18 and 25 seconds (if link speed is between 55 and 75 mph). The two free

flow travel times are subtracted from the arrival time for each long vehicle at station 3,

thereby yielding an arrival time window at station 2. First checking on a lane-by-lane

basis, and then all-lanes-to-all-lanes, whenever an on-time in the window exceeds the

35/60 seconds threshold the station 3 vehicle is recorded as having a possible match. The
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results between station 2 and 3 are summarized in the first few columns of Table 5.1. The

second column indicates the number of long vehicles seen in the video data at station 3,

sorted by lane. A total 113 long vehicles are observed at station 3 northbound and as

noted above, these vehicles were used to define the search time windows for the detector

data at station 2 northbound. Only 53 out of 113 vehicles (about 50% of long vehicle)

have a matched vehicle at station 2 northbound. Looking at the lane-by-lane results, lane

2 has only one matched long vehicle between the stations, while the two other through

lanes have at least 80% of the long vehicles matched between the stations.

The process is repeated substituting data from station 1 (about a half mile further

upstream) in place of station 2. The lane geometry is the same at stations 1 and 2, only

the travel time and travel time windows increase. Now 109 out of the 113 long vehicles at

station 1 northbound have a match (about 96% of long vehicles). Most notably, the

number of matched vehicles in lane 2 between station 1 and station 3 is much higher than

the previous pair, now with 51 out of 57 vehicles (89%) having a match. The other

through lanes each have a rate equal to or lower than the given lane when using station 2

data, as one would normally expect over the longer distance (at least until the time

windows become too large). These results are consistent with the CDFs of on-times

observed directly at station 2, in Figure 5.2.

Generally one would not have video ground truth, in which case this method can

be applied to the loop detector data in both directions- matching from station 3 to station

2 (as per above) but also from station 2 to station 3. Now, however, all stations would use

the 35/60 seconds threshold to define a long vehicle.



Figure 5.1, An example of drop-out without return (DOwoR) from a long vehicle in lane 2

during the 29 min of ground truth (17:21 to 17:50) on 3/09/2009.

Lane 1

Lane 4

Lane 3

Lane 2



Figure 5.2, CDF of on-times at each loop detector by three classes of vehicles as measured

from the concurrent video data

Station 2 Station 3

I-670 

EB/WB 5th Ave 11th Ave

Northbound

2,000 ft

Figure 5.3, Study site used to find matched long vehicles between station 2 and station 3

northbound



Station 3 vs. Station 2 Station 3 vs. Station 1

Method

Number of

long vehicles

at station 3

[from GTD]

Number of

matched vehicles
%

Number of

matched

vehicles

%

Lane 1 by Lane 1 5 4 80% 4 80%

Lane 2 by Lane 2 57 1 2% 51 89%

Lane 3 by Lane 3 48 39 81% 35 73%

Lane 4 by Lane 4 3 1 33% 0 0%

All lanes by All lanes 113 53 47% 109 96%

Table 5.1, Summary of the number of matched vehicles between station 3 and station 2

northbound and between station 3 and station 1 northbound
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CHAPTER 6.  VEHICLE CLASSIFICATION FROM SINGLE LOOP DETECTORS

6.1 Relationship Between the Standard 13 FHWA Vehicle Classes and Length Classes

As a starting point for the length based classification, we examine the

relationships between the standard 13 FHWA vehicle classes and length classes. To

remove any impact of detector errors, we use a data set where the vehicles were filmed

from a 90 degree angle relative to the direction of travel and their lengths were extracted

from video (see Coifman, 2007). These data were collected over four hours on I70 at

Brice Rd. under free flow conditions. We developed a graphic user interface (GUI) to

load each individual vehicle’s image according to its detection on a vehicle classification

station, manually measure its length, and classify it as per the 13 FHWA classes. A total

of 9,746 vehicles were recorded at the location and we generated the ground truth data for

9,372 of them. The remaining 374 vehicles were sufficient obscured when they passed

that we cannot identify number of axles and/or its length.

Using the ground truthed vehicle data, Figure 6.1 plots the distribution of vehicle

lengths for each of the 13 FHWA vehicle classes. Looking at the distribution of each of

the 13 FHWA vehicle classes, we group several neighboring FHWA vehicle classes

together into three groups, as shown in Table 6.1. From the table, one might define or

redefine Xshort and Xlong, the boundaries between the length based classes, by looking at

measured vehicle length within those three groups. For this research, however, unless

otherwise noted, we adopt the two divisions employed by ODOT: 22 ft and 40 ft. These

divisions are superimposed on each plot in Figure 6.1 and are shown in the final column

in Table 6.1. Figure 6.2 shows the histogram and CDF of vehicle length for the three

clusters of FHWA classes. No matter what value of Xshort and Xlong are used, it should be
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clear that there is not a pure one-to-one relationship between the clustered FHWA classes

and the length classes, the overlapping tails in the length distributions ensure that vehicles

from two different classes have similar lengths. More importantly, as enumerated in

Table 6.2, over 80% of the vehicles fall into class 1. As we will see, attempts to minimize

the average absolute error across all of the vehicles will tend to favor this group simply

because it is the largest. So we also generated a set of synthetic data from the ground

truth data, with the same number of vehicles, but now all three classes have the same

number of vehicles. A given vehicle the synthetic data is sampled at random from the

empirical ground truth data for the assigned class (thus ensuring that e.g., there will still

be roughly the same percentage of class 1 vehicles that fall above Xshort). But since the

total number of class 1 vehicles make up a smaller percent of the synthetic data, they will

have a smaller impact on the optimal values for Xshort and Xlong.

Figure 6.3 shows the resulting histograms of length for each of the three clustered

classes, and the histogram for the combined set on the bottom. The left column shows the

empirical data, while the right column shows the synthetic data. Looking at class 2

vehicles,  Xshort and Xlong seem to constraining (i.e., suboptimal) for the synthetic data. So

Figure 6.4 shows all combinations of Xshort and Xlong and tallies the resulting number of

incorrect classifications. As before the left hand column show the results for the empirical

data and the right hand column show the results for the synthetic data. Here we assume a

vehicle is incorrectly classified if its vehicle class from the clustered FHWA vehicle class

does not match the class from the associated length based vehicle classification scheme,

e.g., a vehicle falling into clustered FHWA vehicle class is 1 would be correctly

classified if it also had a length class of 1, but it would be misclassified if the length class

is 2. To understand how to read the plots, consider Figure 6.4A. Across the bottom axis,

the Xshort is stepped from 20 to 23 ft in 1 ft increments. Within each step, there are five

clusters of bars that correspond to the sweep of Xlong from 40 to 44 ft. Meanwhile, a

cluster of bars show the number of incorrectly classified vehicles for given pair of Xshort

and Xlong. In each cluster of bars the leftmost bar is for class 1 and the right most for class

3. The below, Figure 6.4C sums across the cluster of bars, showing the total number of
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vehicles that would be misclassified for the given pair of Xshort and Xlong. Then Figure

6.4E & F present the same results in terms of percent of vehicles within the class or

across all classes, respectively. The right hand side of the figure repeats the process for

the synthetic data. From the empirical data, the optimal values are Xshort=21 ft and

Xlong=40 ft, while from the synthetic data, the optimal values are Xshort=20 ft and Xlong=43

ft. The empirical data are very close to the 22 and 40 ft delineations that ODOT uses, but

it also underscores the facts (1) the optimal boundary for the fleet is a function of the

vehicle fleet, and (2) any underrepresented class will literally be squeezed by the length

delineations.

6.2 Probability That a Given Length Based Vehicle Classification is True

One initially puzzling finding that we reported in Coifman (2007) and Coifman

and Kim (2009) is the fact that our initial single loop detector, length based vehicle

classification scheme performed much better on class 1 and class 3 vehicles (typically

over 95% accuracy) than it did on class 2 vehicles (typically on the order of 75%

accuracy). In this section we return to this question and answer it. Like the earlier study,

we continue to use the distribution based method for estimating vehicle speed from single

loop detectors. Basically this approach looks at the distribution of on-times, rather than

just the mean or median, to deduce the speed. It provided consistent results from 10%

vehicles to 90% long vehicles. Except during heavy congestion, the accuracy approaches

that of dual loop detectors. Vehicle lengths are then estimated from the product of the

estimated speed and measured on-time.

In the present study we construct a model to calculate the probability that a given

estimated vehicle length based vehicle class corresponds to the vehicles true length class

by employing the video based ground truth length data from I70 at Brice Rd. Since the

distribution of the length estimation error can be constructed (i.e., the difference between

the measured length from ground truth and estimated vehicle length from single loop

detectors), we can calculate the probability that a given length estimate will fall in the

same length class as that vehicle's true length given the boundaries between classes. For
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example, suppose the estimated vehicle length of a vehicle is 18 ft and the distribution of

estimation error followed a normal distribution with the mean 0 and variance 2 , as

shown in Figure 6.5. From the distribution we calculate the probability that the estimated

vehicle length will exceed the 22 ft boundary between class 1 and class 2, i.e., the shaded

area in the figure. Or conversely, from the distribution one can deduce the probability that

a given vehicle class based on estimated vehicle length is consistent with that vehicle's

true length class.

To test normality of our data, we took 100 samples randomly and generated

normal probability plot as illustrated in Figure 6.6. So given that the distribution of

estimation error follows normal distribution, we looked at how the sample variance

changes as a function of vehicle length. Figure 6.7 shows the sample variance calculated

from the data sampled every 2ft and the fitted line from linear regression. As can be seen,

generally variance tends to increase as vehicle length increase. There are some sample

variances off from the fitted line between 22 ft and 50 ft, potentially due simply to an

insufficient number of samples in this range. Consequently we decided to use the fitted

line to calculate the variance for a given vehicle length. The solid curves in Figure 6.8

show the resulting estimates for each of the three length ranges corresponding to the

vehicle classes. In each case the probability drops to 50% at the boundary between

classes. Next, we calculate the proportion of correct classification for vehicles actually

observed, in 2ft bins, e.g., we counted total number of true class 1 vehicles out of all

vehicles whose estimated length falls between 18ft and 20ft. The results are shown with

points (which may also appear as a bold, piecewise horizontal line). The empirical results

roughly follow the theoretical model, with the largest difference occurring for class 2

vehicles between 22ft and 26ft.

So the higher rate of class 2 classification errors is not surprising, it arose for

several reasons. First, class 2 has two boundaries, so unlike the other two classes, by

definition, all class 2 vehicle lengths are within 9 ft of one boundary or the other and

thus, more susceptible to the boundary issue noted above. Roughly 40% of the class 2

vehicles were within 4 ft of a boundary while only 15% of class 1 (the short vehicles) and
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under 10% of class 3 (the long vehicles) were within 4 ft of their respective boundaries.

This problem is exasperated by the fact that the variance in the length estimation error

increases with vehicle length, so it impacts class 2 more. The median length in class 3 is

28 ft away from the boundary, so even with a higher variance these vehicles are less

likely to be misclassified. Such boundary errors also impact class 2 vehicles when using

dual loop detectors to measure vehicle length since the measured speed also exhibits an

error distribution while the on-time error distribution should be similar to that of single

loop detectors.

6.3 Systematic Reasons Why a Single Loop Detector Length Based Classification might

be Erroneous

6.3.1 Distribution of Measured Speed for Each Class

Since the speed estimation algorithm uses modes in the distribution of on-time to

estimate individual vehicle speed, slower or faster speed from specific vehicle class

might bias the speed estimation (e.g., slow moving heavy truck or fast moving passenger

car). One might typically expect that class 1 vehicles are generally faster than class 2 and

3; and the majority of vehicles passing through the I71 corridor are class 1 vehicles. Thus

speed and length of class 2 or 3 vehicles would be over-estimated due the fact that the

speed estimation is more likely to favor the faster class 1 vehicles. Figure 6.9 shows the

distribution of measured speed for each class from a dual loop detector station (station 1)

along I71. Here we only take samples at free speed (between 45 and 80 mph) over three

days of data and the vehicle class was derived from the measured speed.

As can be seen in Figure 6.9, the distribution for class 1 is distinct from the other

two classes separately in the three through lanes
5
 as well as the combined distribution

across these lanes. In short, the speed of class 2 and 3 vehicles tends to be slower than

that of class 1 vehicles. Table 6.3 tabulates the median speed in each of the lanes and

                                                  

5
 Recall that this station actually has four lanes, but the right hand lane ends about one half mile downstream, it sees

little traffic and even fewer long vehicles, to conserve space it is excluded from the presentation.
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across the three. This table illustrates how different the speed of class 1 vehicles is from

the other two classes, in each case the median speed for class 1 vehicles is about 5 mph

faster than the other two classes. From this analysis, we recognize that aggregated speed

and estimated vehicle length from it at a single loop detector might see some accuracy

limitations not observed at dual loop detectors.

6.4 Examine the Mean and Median Speed for Correctly and Incorrectly Classified

Vehicles Near the 22 ft Boundary

To investigate incorrect vehicle classification near the boundary between class 1

and 2 from single loop detectors, we looked at the median and mean of measured speed

and estimated speed for all vehicles between 17 and 31 ft (i.e., class 1 and class 2

vehicles near the boundary between the two classes) from the ground truth data on I70 at

Brice Rd. Table 6.4 shows the number of these near-boundary vehicles that fall into each

of four combinations, first each vehicle is classified from the single loop detector data as

being class 1 or class 2, and this determines which column it falls in ("EL" for 'estimated

length'). Second, these vehicles are similarly classified from the video data, which

determines which row ("GL" for 'ground truth length'). For each vehicle we find the

measured (from dual loop detector) and estimated (from single loop detector) speed.

Looking at the counts in misclassification cells (1
st
 row 2

nd
 column and 2

nd
 row and 1

st

column), more GL class 2 vehicles are incorrectly classified than GL class 1. This result

is consistent with Table 6.3, class 1 vehicles are more likely to travel faster than median

speed. Therefore they are less likely to be overclassified. To verify this supposition,

within each combination from Table 6.4, we then calculate the ratio and the difference

between the measured and estimated mean speed for each cell from the dual and single

loop detectors, then repeat the process for the median speed, as enumerated in Table 6.5.

This table clearly shows that a difference in speed between incorrect and correct

classification indeed exists. The difference is closer to zero in the two cells where both

classifications agree compared to the two cells where the classifications differ. If a class 1
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vehicle is moving slower than the estimated speed, it is more likely to be placed in class 2

based on the single loop detector data, similarly, if a class 2 vehicle is moving faster than

the estimated speed, it is more likely to be placed in class 1. As noted previously, the

speed estimation algorithm still seeks the center speed of a sample (unlike chapter 4, now

the sample is only 31 vehicles long), so if a vehicle's true speed is far from the center,

these errors can arise. While these errors degrade classification performance some, from

Table 6.4, they impact less than 10% of the vehicles in the study set and much less than

10% of the entire population. As will be seen shortly, the classification algorithm still

yields good results in spite of these systematic errors.

6.5 Test Performance Against Additional Ground Truth Data

Moving beyond the existing ground truth data from I70 at Brice Rd, we collected

many hours of ground truth data throughout the CMFMS (as presented in Chapters 3 and

4).  Since the views from the video were not ideal for measuring vehicle length, we

manually classified each vehicle into small, median, long vehicle class based on the

clustered FHWA classes in Table 6.1. The additional data sets are listed in Table 6.6. We

evaluated the results with and without the pulse breakup data cleaning algorithms from

Chapter 4 (henceforth, referred to as cleaned data). As can be seen in Table 6.6, in

addition to several sets from free flow conditions, three sets of data have were collected

during congested conditions and another three during mixed conditions where we can

observe free flowing and congested traffic in one data set. As a by-product from ground

truthing, we found several stations with splashover, pulse breakup and various stray

detector errors (e.g., due to lane change maneuvers). These features are used to cluster the

ground truth data sets in Table 6.6, we categorized each set of ground truth data into three

groups: stations without actual pulse breakup and splash over; stations with pulse breakup

but no splash over; and stations with splash over.

After clustering the data in this fashion, we evaluate the single loop detector,

length estimation algorithm by comparing length based vehicle class with ground truthed

vehicle class. Table 6.7 shows the individual station results from the raw data for those
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stations without pulse breakup and without splashover. Each subtable is for one data set

and combines the data from all lanes. Our classification determines the row in which a

given sample will fall in (C1-C3 based on EL). If we had merged pulses suspected of

arising from pulse breakup that were actually distinct cars (as we will in the next table),

these would have been recorded in the final row. Whenever the pulse is indeed due to a

real vehicle, the result will fall in one of the first three columns based on its clustered

FHWA class (C1-C3 based on GL). In this case there were no pulse breakups, but had

there been, the first pulse would have fallen in C1-C3 columns and the 2nd (or more)

would be recorded in the pulse breakup (PBU) column. Finally, there were several pulses

due to vehicles changing lanes over the detectors (LCM) or simply splashover (SO), these

are recorded in the final column. The table itself does not allow overcounting errors to

cancel undercounting errors. The successfully classified vehicles fall on the diagonal,

(C1,C1), (C2,C2), and (C3,C3). Below each subtable we note the number of vehicles (if

any) that were obscured in the ground truth data. Then subtract the row sum (EL) from

the column sum (GL) for each class to find the net incorrect classification with and

without the non-vehicle pulses (NVP).

Table 6.8 repeats this process for those stations with pulse breakup. Now,

however, the tables are doubled, on the left are results from the raw data, and on right the

results from the cleaned data. In the raw data most of the pulse breakup events wind up

being erroneously classified as C1, but in the cleaned data, most of these events have

been resolved (though some errors clearly remain).

Table 6.9 repeats the process for those stations with splashover. Note that

combined splashover events in the main grid are now highlighted parenthetically, e.g.,

"9(8)" means eight of the nine observations in that cell are due to combined splashover

events.

Finally, Table 6.10 sums across each of the sub-groups. The correct classifications

are in shaded cells. Below, the "Correctly classified" row takes the sum of the shaded

cells, as well as the total number of vehicles shown on the given subtable. The next row
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enumerates the number of pulses that were incorrectly classified, as well as tallying how

many of those were due to non-vehicle pulses and thus, could not be correctly classified.



Figure 6.1, Histogram of ground truth, measured length for each of the 13 FHWA vehicle

classes



Figure 6.2, Distributions of measured vehicle length for the three clustered FHWA vehicle

classes

# of vehs above 22ft: 154(2%) # of vehs below 40ft: 3 (0.2%)# of vehs below 22ft: 42 (9.5%)

# of vehs above 40ft: 3 (0.06%)



Figure 6.3, Histogram of measured vehicle length in ground truth data for each of the three

clustered classes, and the histogram for the combined set on the bottom. The left

column shows the empirical data, while the right column shows the synthetic data.



Real data (Groundtruth data in I70 at Brice Rd.) Synthetic data

Figure 6.4, Incorrect vehicle classification (A&B: # of incorrectly classified vehicle for each

class, C&D: # of incorrectly classified vehicle for all classes, E&F: % of

incorrectly classified vehicle for each class, G&H: % of incorrectly classified

vehicle for all classes)
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Figure 6.5, Distribution of measurements from an 18 ft vehicle

Figure 6.6, Normality probability plot

P

18 +18ft18 ft22

34.1% 34.1%



Figure 6.7, Variance of estimation error as a function of vehicle length

Figure 6.8, Probability that estimated length based vehicle class is true as a function of length

(A: Class 1, B: Class 2, C: Class 3)

A B

C



Figure 6.9, Distribution of speed (A: Lane 1, B: Lane 2, C: Lane 3, D: All lanes combined)

using three days of typical data, excluding speeds beyond 45 and 80 mph.

A B

C D



Clustered FHWA VCS. Length Based VCS.

Class 1 FHWA class 1,2, and 3 0<ML< Xshort

Class 2 FHWA class 4, 5, 6 and 7 Xshort<ML< Xlong

Class 3 FHWA class 8, 9,10,11,12 and 13 Xlong<ML

Table 6.1, Clustered FHWA vehicle classification scheme (VCS) and length based vehicle

classification scheme

Number of samples Class 1 Class 2 Class 3

“Sort by FHWA” 7424 438 1385

“Sort by true vehicle len” 7324 478 1472

Table 6.2, Number in each class

Class 1 Class 2 Class 3

Lane 1 62.22 mph 58.13 mph 56.64 mph

Lane 2 62.76 mph 57.27 mph 56.56 mph

Lane 3 61.91 mph 55.87 mph 55.87 mph

All lanes 62.22 mph 56.56 mph 56.56 mph

Table 6.3, Median free speed for each length class, by lane

Number of vehicles Class 1 from EL Class 2 from EL

Class 1 from GL 650 40

Class 2 from GL 48 301

Table 6.4, Classifying vehicles between 17 and 31 ft based on ground truth length (GL) and

estimated length (EL), this table presents the distribution.



Measured */ Estimated**
A1) Mean

speed
Class 1(EL) Class 2(EL)

Class 1(GL) 60.75/62.97 50.51 /59.38

Class 2(GL) 63.49/59.94 62.21/61.98

Measured */ Estimated**
B1) Median

speed
Class 1(EL) Class 2(EL)

Class 1(GL) 61.60/62.50 50.60 /61.32

Class 2(GL) 62.70/59.10 61.60/60.80

Measured *- Estimated**
A2)Difference

Class 1(EL) Class 2(EL)

Class 1(GL) -2.22 -8.87

Class 2(GL) 3.55 0.23

Measured *- Estimated**
B2)Difference

Class 1(EL) Class 2(EL)

Class 1(GL) -0.9 -10.72

Class 2(GL) 3.6 0.80

*: from dual loop detector in I70 at Brice

**: from distribution method

Table 6.5, Mean and median of measured and estimated speed.



Date Station
[1] # of

true PBU

 [2] # of

susp. PBU

[3] # of true

PBU in [2]

[4] # of incor.

PBU in [2]

Total #

of pulse
[1]/[2] Cond.

-Stations without actual pulse break up and splash over

20090312 104WB* 0 1 0 1 1519 NaN FF

20080902 43EB* 0 1 0 1 1058 NaN FF

20080902 43WB* 0 5 0 5 1518 NaN FF

20080903 56EB* 0 5 0 5 1688 NaN FF

20090310 102EB* 0 5 0 5 1596 NaN Mix

20081121 31NB* 0 3 0 3 638 NaN FF

-Stations with pulse break up but no splash over

20090309 18NB* 16 15 15 0 549 0.94 FF

20090310 15NB* 40 34 34 0 2978 0.85 Mix

20080317 19NB* 24 24 24 0 753 1 FF

20080317 3NB* 49 44 43 1 1214 0.88 FF

20080418 3NB* 120 113 101 12 5709 0.84 CG

-Stations with splash over

20080317 104EB* 0 44 0 44 1799 NaN Mix

20081121 56WB* 0 5 0 5 1098 NaN FF

20090312 41EB* 0 53 0 53 1668 NaN CG

20080903 56WB* 0 30 0 30 2850 NaN CG

20080909 41EB* 0 14 0 14 842 NaN FF

[1]: # of true PBU: number of pulse break ups observed via ground truthing video

[2]: number of suspected PBU: number of pulse break ups that the data cleaning algorithm considers as pulse break ups

[3]: # of true PBU in [2]: number of suspected pulse break ups that turns out to be true via ground truting video

[4]: number of incur PBU in [2]: number of suspected pulse break ups that turns out not to be  true via ground truting

video

Table 6.6, Summary of cleaned data



[1] 20090312/station104WB/ FF

Groundtruth Non veh. PulseW/ Raw

Data C 1 C 2 C 3 PBU LCM/SO

C 1 1362 6 0 0 13

C 2 5 26 0 0 0EL

C 3 0 4 103 0 0

Incorrect PBU 0 0 0 0 0

# of obscured vehicle not included in table:                  0

Net incorrect classification w/o NVP (-1, 5, -4)

Net incorrect classification w/ NVP (-14, 5, -4)

[5] 20090310/station102EB/Mix

Groundtruth Non veh. PulseW/ Raw

Data C 1 C 2 C 3 PBU LCM/SO

C 1 1428 8 0 0 16

C 2 15 28 0 0 1EL

C 3 0 5 95 0 0

Incorrect PBU 0 0 0 0 0

# of obscured vehicle not included in table:                  0

Net incorrect classification w/o NVP (7, -2,-5)

Net incorrect classification w/ NVP (-9, -3,-5)

[2] 20080902/station43EB/FF

Groundtruth Non veh. PulseW/ Raw

Data C 1 C 2 C 3 PBU LCM/SO

C 1 975 4 0 0 14

C 2 1 43 0 0 0EL

C 3 0 2 19 0 0

Incorrect PBU 0 0 0 0 0

# of obscured vehicle not included in table:                  7

Net incorrect classification w/o NVP (-3, 5, -2)

Net incorrect classification w/ NVP (-17, 5, -2)

[6] 20081121/station31NB/FF

Groundtruth Non veh. PulseW/ Raw

Data C 1 C 2 C 3 PBU LCM/SO

C 1 457 6 0 0 17

C 2 0 20 0 0 0EL

C 3 0 7 129 0 2

Incorrect PBU 0 0 0 0 0

# of obscured vehicle not included in table:                  0

Net incorrect classification w/o NVP (-6, 13,-7)

Net incorrect classification w/ NVP (-23, 13,-9)

[3] 20080902/station43WB/FF

Groundtruth Non veh. PulseW/ Raw

Data C 1 C 2 C 3 PBU LCM/SO

C 1 1409 15 0 0 41

C 2 1 36 0 0 0EL

C 3 0 4 12 0 0

Incorrect PBU 0 0 0 0 0

# of obscured vehicle not included in table:                16

Net incorrect classification w/o NVP (-14, 18, -4)

Net incorrect classification w/ NVP (-55, 18, -4)

[4] 20080903/station56EB/FF

Groundtruth Non veh. PulseW/ Raw

Data C 1 C 2 C 3 PBU LCM/SO

C 1 1514 6 0 0 86

C 2 3 46 0 0 2EL

C 3 0 3 28 0 0

Incorrect PBU 0 0 0 0 0

# of obscured vehicle not included in table:                  0

Net incorrect classification w/o NVP (-3, 6, -3)

Net incorrect classification w/ NVP (-89, 4, -3)

Table 6.7, Vehicle classification at stations without actual pulse breakup or splash over



[1] 20090309/station18NB/FF

W/ Raw Data W/ Cleaned Data

Groundtruth Non veh. Pulse Groundtruth Non veh. Pulse

C 1 C 2 C 3 PBU LCM/SO C 1 C 2 C 3 PBU LCM/SO

C 1 495 0 0 14 6 495 0 0 0 6

C 2 3 18 12 1 0 3 18 1 0 0EL

C 3 0 3 11 1 0 0 3 22 1 0

Incorrect PBU 0 0 0 0 0 0 0 0 0 0

# of obscured vehicle not included in table:                                                                                                    0

Net incorrect classification w/o NVP (3, -12, 9) (3, -1, -2)

Net incorrect classification w/ NVP (-17, -13, 8) (-3, -1, -3)

[2] 20090310/station15NB/Mix

W/ Raw Data W/ Cleaned Data
Groundtruth Non veh. Pulse Groundtruth Non veh. Pulse

C 1 C 2 C 3 PBU LCM/SO C 1 C 2 C 3 PBU LCM/SO

C 1 2879 11 1 39 2 2879 9 1 6 2

C 2 9 7 32 1 0 9 9 4 0 0EL

C 3 0 13 18 0 0 0 13 46 0 0

Incorrect PBU 0 0 0 0 0 0 0 0 0 0

# of obscured vehicle not included in table:                                                                                                    0

Net incorrect classification w/o NVP (-3, -17, 20) (-1, 9, -8)

Net incorrect classification w/ NVP (-44, -18, 20) (-9, 9, -8)

[3] 20080317/station19NB/FF

W/ Raw Data W/ Cleaned Data

Groundtruth Non veh. Pulse Groundtruth Non veh. Pulse

C 1 C 2 C 3 PBU LCM/SO C 1 C 2 C 3 PBU LCM/SO

C 1 677 6 0 24 0 677 6 0 0 0

C 2 1 28 20 0 0 1 28 0 0 0EL

C 3 0 2 19 0 0 0 2 39 0 0

Incorrect PBU 0 0 0 0 0 0 0 0 0 0

# of obscured vehicle not included in table:                                                                                                    0

Net incorrect classification w/o NVP (-5, -13, 18) (-5, 7, -2)

Net incorrect classification w/ NVP (-29, -13, 18) (-5, 7, -2)

Table 6.8, Vehicle classification at stations with pulse break up but no splash over- part 1 of

2



[4] 20080317/station3NB/FF

W/ Raw Data W/ Cleaned Data

Groundtruth Non veh. Pulse Groundtruth Non veh. Pulse

C 1 C 2 C 3 PBU LCM/SO C 1 C 2 C 3 PBU LCM/SO

C 1 1078 4 5 49 0 1076 2 2 6 0

C 2 12 37 32 0 0 12 39 4 0 0EL

C 3 0 8 32 0 0 1 8 63 0 0

Incorrect PBU 0 0 0 0 0 1 0 0 0 0

# of obscured vehicle not included in table:                                                                                                    0

Net incorrect classification w/o NVP (3, -32, 29) (10, -6, -3)

Net incorrect classification w/ NVP (-46, -32, 29) (4, -6, -3)

[5] 20080418/station3NB/CG

W/ Raw Data W/ Cleaned Data

Groundtruth Non veh. Pulse Groundtruth Non veh. Pulse

C 1 C 2 C 3 PBU LCM/SO C 1 C 2 C 3 PBU LCM/SO

C 1 4652 44 8 105 32 4742 40 1 14 32

C 2 577 56 63 14 0 505 55 3 4 0EL

C 3 164 35 59 1 0 134 40 126 1 0

Incorrect PBU 0 0 0 0 0 12 0 0 0 0

# of obscured vehicle not included in table:                                                                                                    0

Net incorrect classification w/o NVP (689, -561, -128) (610, -428, -170)

Net incorrect classification w/ NVP (552, -575, -129) (564, -432, -171)

Table 6.8, Vehicle classification at stations with pulse break up but no splash over- part 2 of

2



*: Table with combined splash over

(#): total # of combined splash over

[1] 20080317/station104EB/ Mix*

Groundtruth Non veh. Pulse
W/ Raw

Data C 1 C 2 C 3 PBU
LCM/S

O

C 1 1083(25) 5 0 0 401

C 2 122(57) 32 1 0 10EL

C 3 17(13) 4 99 0 25

Incorrect PBU 0 0 0 0 0

# of obscured vehicle not included in table:                  0

Net incorrect classification w/o NVP (134, -114,-20)

Net incorrect classification w/ NVP (-267, -124,-45)

[5] 20080909/station41EB/FF*

Groundtruth Non veh. Pulse
W/ Raw

Data C 1 C 2 C 3 PBU
LCM/S

O

C 1 608 9 0 0 68

C 2 9(8) 24 0 0 22EL

C 3 9(9) 6 82 0 5

Incorrect PBU 0 0 0 0 0

# of obscured vehicle not included in table:                  0

Net incorrect classification w/o NVP (9, 6,-15)

Net incorrect classification w/ NVP (-59, -16,-20)

[2] 20081121/station56WB/ FF

Groundtruth Non veh. Pulse
W/ Raw

Data C 1 C 2 C 3 PBU
LCM/S

O

C 1 921 10 0 0 58

C 2 2 49 0 0 6EL

C 3 0 4 48 0 0

Incorrect PBU 0 0 0 0 0

# of obscured vehicle not included in table:                  0

Net incorrect classification w/o NVP (-8, 12,-4)

Net incorrect classification w/ NVP (-66, 6,-4)

[3] 20090312/station41EB/CG*

Groundtruth Non veh. Pulse
W/ Raw

Data C 1 C 2 C 3 PBU
LCM/S

O

C 1 1408 4 0 0 22

C 2 131(9) 27 0 0 1EL

C 3 20(13) 5 50 0 0

Incorrect PBU 0 0 0 0 0

# of obscured vehicle not included in table:                  0

Net incorrect classification w/o NVP (147, -122,-25)

Net incorrect classification w/ NVP (125, -123,-25)

[4] 20080903/station56WB/CG

Groundtruth Non veh. Pulse
W/ Raw

Data C 1 C 2 C 3 PBU
LCM/S

O

C 1 2516 15 0 0 74

C 2 128 34 0 0 5EL

C 3 42 9 22 0 5

Incorrect PBU 0 0 0 0 0

# of obscured vehicle not included in table:                  0

Net incorrect classification w/o NVP (155, -104,-51)

Net incorrect classification w/ NVP (81, -109,-56)

Table 6.9, Vehicle classification at stations with splash over



[1] Summary of stations w/o PBU or SO (All FF)

Groundtruth Non veh. PulseW/ Raw

Data C 1 C 2 C 3 PBU LCM/SO

C 1 5717 37 0 0 171

C 2 10 171 0 0 2EL

C 3 0 20 291 0 2

Incorrect PBU 0 0 0 0 0

Correctly classified: 6179/6421

Incorrectly classified: 242 (67 w/o Non veh. Pulse)

Net incorrect classification w/o NVP (-27, 47,-20)

Net incorrect classification w/ NVP (-198, 45,-22)

[2] Summary of stations w/ PBU

W/ Raw Data during FF W/ Cleaned Data during FF

Groundtruth Non veh. Pulse Groundtruth Non veh. Pulse

C 1 C 2 C 3 PBU LCM/SO C 1 C 2 C 3 PBU LCM/SO

C 1 2250 10 5 87 6 2248 8 2 6 6

C 2 16 83 64 1 0 16 85 5 0 0EL

C 3 0 13 62 1 0 1 13 124 1 0

Incorrect PBU 0 0 0 0 0 1 0 0 0 0

Correctly classified: 2395/2598  2457/2516

Incorrectly classified: 203 (108 w/o Non veh. Pulse)  59 (46 w/o Non veh. Pulse)

Net incorrect classification w/o NVP (1,-57, 56) (8, 0, -7)

Net incorrect classification w/ NVP (-92,-58, 55) (-4, 0,-8)

W/ Raw Data during CG (st. 3NB) W/ Cleaned Data during CG (st. 3NB)

Groundtruth Non veh. Pulse Groundtruth Non veh. Pulse

C 1 C 2 C 3 PBU LCM/SO C 1 C 2 C 3 PBU LCM/SO

C 1 4652 44 8 105 32 4742 40 1 14 32

C 2 577 56 63 14 0 505 55 3 4 0EL

C 3 164 35 59 1 0 134 40 126 1 0

Incorrect PBU 0 0 0 0 0 12 0 0 0 0

Correctly classified: 4767/5810 4923/5709

Incorrectly classified: 1043(891 w/o Non veh. Pulse) 786 (735 w/o Non veh. Pulse)

Net incorrect classification w/o NVP (689,-561,-128) (610,-428,170)

Net incorrect classification w/ NVP (552,-575,-129) (564,-432,-171)

[3] Summary of stations w/ SO

During FF

Groundtruth Non veh. PulseW/ Raw

Data C 1 C 2 C 3 PBU LCM/SO

C 1 1529 19 0 0 126

C 2 11 73 0 0 28EL

C 3 9 10 130 0 5

Incorrect PBU 0 0 0 0 0

During CG (st. 41EB and 56WB)

Groundtruth Non veh. PulseW/ Raw

Data C 1 C 2 C 3 PBU LCM/SO

C 1 3924 19 0 0 96

C 2 259 61 0 0 6EL

C 3 62 14 72 0 5

Incorrect PBU 0 0 0 0 0

Correctly classified: 1732/1940 4057/4518

Incorrectly classified: 208 (49 w/o Non veh. Pulse) 461 (354 w/o Non veh. Pulse)

Net incorrect classification w/o NVP (1, 18,-19) (302, -259,-76)

Net incorrect classification w/ NVP (-125,-10,-24) (206,-232,-81)

Table 6.10, Summary of FF and CG (does not include Mix samples)- part 1 of 2.



[4a] Summary during congestion

Groundtruth Non veh. PulseW/ Raw

Data C 1 C 2 C 3 PBU LCM/SO

C 1 8576 63 8 105 128

C 2 836 117 63 14 6EL

C 3 226 49 131 1 5

Incorrect PBU 0 0 0 0 0

Correctly classified: 8824/10328

Incorrectly classified: 1504 (1245 w/o Non veh. Pulse)

Net incorrect classification w/o NVP (991,-787,-204)

Net incorrect classification w/ NVP (758,-807,-210)

[4b] Summary during congestion excluding known error (e.g., non veh pulse, combined so, and first pulse associated

with PBU)

GroundtruthW/ Raw

Data C 1 C 2 C 3

C 1 8576 59 0

C 2 827 113 1EL

C 3 213 49 93

Incorrect PBU 0 0 0

Correctly classified: 8782/10069

Incorrectly classified: 1149

Table 6.10, Summary of FF and CG (does not include Mix samples)- part 2 of 2.
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CHAPTER 7.  CONCLUSIONS

This chapter summarizes the research, highlights its contributions, and proposes

directions for future research.

7.1 Summary

Most of the states served by this regional UTC have deployed a large number of

single loop detectors for real time traffic monitoring (e.g., Chicago has 2,400 single loop

detectors, while Mineapolis/St. Paull has 3,500). Almost all of the states in this region

also have single loop detector count stations used to measure AADT without classifying

vehicles. The research seeks to refine and further develop a method to provide a reliable

estimate of individual vehicle speed and length, initiated by the predecessor to

NEXTRANS. This new, reliable, single loop detector methodology for classifying

vehicles based on estimated vehicle length is significant because it will: (i) provide a low

cost means of collecting vehicle classification data to supplement existing systems,

leveraging the existing detector infrastructure, integrating new data collection with the

existing surveillance system at the thousands of single loop detectors on the freeways

within the region served by the regional UTC (it is meant to supplement rather than

supplant other vehicle classification technologies), (ii) provide a viable means of

estimating speed and length at a conventional classification station when one loop fails in

a dual loop detector. The research has secondary benefits as well, in a draft research

statement from the TRB Committee on Highway Traffic Monitoring, "Classification

based solely on vehicle length is an alternative to axle-based classification but there has

been no systematic study of how well it works -- or how it should work." The proposed
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research will have to address many of these issues, and it should further the state of the

art in dual loop detector based vehicle classification as well.

The resulting expansion of classification coverage and performance will in turn

feed the various applications that rely on vehicle classification data. The new truck counts

should benefit a wide range of applications, ranging from infrastructure maintenance and

rehabilitation to better modeling of freight shipments in urban areas for the planning

process.

Finally, tertiary benefits should be expected in the area of improved error

corrections from both single and dual loop detectors and speed estimates from single loop

detectors. The need to catch detector dropouts will benefit most means of conventional

traffic monitoring, while the efforts to improve single loop speed estimation during

congestion will benefit the many existing single loop detector based systems (and the

emerging detectors that emulate single loop detectors).

7.2 Findings

Speed estimation, length estimation, and vehicle classification algorithms were

developed and improved in the course of this work. Approximately 21 hours of

directional traffic data were ground truthed from 34 different data sets collected at 22

different locations and an average of 3.3 lanes per set. A total of 78,774 detector

actuations were manually ground truthed (in the absence of a detector error, there should

be exactly one actuation per vehicle). Roughly a quarter of these data come from

congestion. Three different, chronic detector errors were observed at several of the

detector stations: splash-over (SO), pulse breakup (PBU), and detector dropout without

return (DOwoR). These errors degrade classification performance as well as conventional

speed, flow and occupancy; at single loops and dual loops alike. Preliminary diagnostic

algorithms for identifying SO and PBU errors were developed and should be transferable

to most loop detector stations (single loops and dual loops alike). The SO algorithm only

detects the presence of the problem. The PBU algorithm is able to go further, it can repair

most of the observed errors. Working with ODOT, we adjusted the detector settings at

four detector stations and we were successful in eliminating the chronic detector errors at
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these stations. If these results are typical, the improved detector calibration enabled by

our research could lead to a very inexpensive means to improve the quality of loop

detector data at existing stations.

During free flow: at stations without PBU and without SO we had a correct

classification rate of 96%, of the errors (72% of the errors were due to non-vehicle pulses

(NVP), in this case due to vehicles changing lanes over the detector). The correct

classification rate drops to 92% from raw data at stations with PBU (47% of errors due to

NVP, including extra pulses from PBU), but improves to 98% when using our diagnostic

algorithms to eliminate PBU (78% of errors due to NVP). The correct classification rate

drops to 89% at stations with SO (76% of errors due NVP). Note that this analysis was

conducted on a per vehicle basis, so in error with one vehicle is not allowed to cancel an

error with another vehicle. During congestion: all stations used for classification

evaluation exhibited PBU or SO, we had a correct classification rate of 85% (17% due to

NVP), but improves to 88% when using our diagnostic algorithms to eliminate PBU

(12% of errors due to NVP).

Performance from the single loop detectors is comparable to dual loop detectors

when traffic is free flowing. The length based classification performance degrades by

about 10% during congestion because the individual speed estimates are still based on a

sample of vehicles and in heavy congestion it is possible for a given vehicle's true speed

to be far from the center of the sample. These congested conditions can be identified

based on the speed estimates, so if the degradation is unacceptable the classification

results can be discounted or subsequent research can develop adjustment factors.

After excluding the chronic detector errors (PBU, SO, and DOwoR), most

classification errors were due to a true vehicle length being close to the boundary

between two bins and the estimated length falling just on the other side of the boundary.

Using thresholds of 22 and 40 ft between vehicle classes, class 2 (the middle class) had a

significantly higher error rate than the other two classes. The higher rate of class 2 errors

arose for several reasons, first, class 2 has two boundaries, so unlike the other two

classes, by definition, all class 2 vehicle lengths are within 9 ft of one boundary or the
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other and thus, more susceptible to the boundary issue noted above. Roughly 40% of the

class 2 vehicles were within 4 ft of a boundary while only 15% of class 1 (the short

vehicles) and under 10% of class 3 (the long vehicles) were within 4 ft of their respective

boundaries. Such boundary errors also impact class 2 vehicles when using dual loop

detectors to measure vehicle length.

7.3 Future directions

Discovering the extent of the chronic detector errors was an unanticipated

byproduct of this research, but it may also prove to be one of the most significant

findings since it potentially impacts most loop detector deployments. With conventional

detector aggregation, e.g., 30 sec or 5 min averaging, the chronic errors often go

unnoticed unless they are severe. Our diagnostic algorithms show great promise for

detecting PBU and SO. After further refinement, in the short term these algorithms could

be incorporated into a field diagnostic tool to assess the performance of a given station,

either by tapping into the data upstream of the controller, e.g., via the InfoTek Wizard, or

running an alternate controller program for a day or two, e.g., Caltrans Log_170. In the

longer run, such tests should be incorporated into the regular controller software so that

the controller can continually assess the health of the detectors. More research is

necessary for catching DOwoR since the resulting time series from these errors are

usually indistinguishable from the passage of a shorter vehicle. We have made some

progress in catching DOwoR by comparing vehicle actuations between successive

stations, but more work is needed. In the mean time, as one might expect, all of the

stations that we observed having DOwoR also exhibited PBU. So in these cases, it is still

possible to identify that the station has a problem. Operating agencies and freeway

vehicle detector manufacturers (loop detector and non-invasive detectors) should evaluate

these tools for potential adoption.

Operating agencies with single loop detectors should consider deploying the

vehicle classification scheme developed in this research as a means to extract more

information from their existing detector infrastructure. Similarly, manufacturers of non-
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invasive detectors that emulate single loop detectors (e.g., Image Sensing Systems-

RTMS) should consider employing these ideas in their classification scheme.

Finally, a practical length based vehicle classification scheme needs to be robust

to the large discrete steps between classes (whether from single or dual loop). Further

work is needed to develop strategies for mitigating these boundary errors. One example is

the simple strategy of using buffer regions, e.g., vehicles with lengths from 19 ft to 25 ft

are considered "class 1 or class 2" vehicles and treated accordingly. Since these vehicles

are definitely at the extreme end of their class, they might be treated differently than

vehicles closer to the center of the class (e.g., borrowing ideas from fuzzy logic, instead

of counting a 24 ft vehicle as 100% class 2, it might be counted as 0.8 class 2 and 0.2

class 1). Like the chronic detector errors, this discovery was an unanticipated byproduct

of the detailed ground truthing and analysis. Determining the optimal correction was

beyond the scope of the present work, but should be examined in future research.
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APPENDIX A

Roadway usage, particularly by large vehicles, is one of the fundamental factors

determining the lifespan of highway infrastructure. Benekohal and Girianna (2003) note

that "[i]t is necessary to encourage state DOTs to include classification counts in their

annual traffic-monitoring program" While "some states lacked the necessary resources to

adequately sample ADTs on the local road systems."

Meanwhile, single-loop detectors are the most common vehicle detector in use to

monitor traffic, both for real-time operations and for collecting census data such as

Annual Average Daily Travel (AADT). New, out-of-pavement detectors seek to replace

loop detectors using non-invasive, wayside mounted sensors, but most of these detectors

emulate the operation of single-loop detectors. In either case, collecting reliable length

data from these detectors has been considered impossible due to the noisy speed

estimates provided by conventional data aggregation at single-loop detectors (and in the

case of non-invasive sensors, the noisy on-time measurements as well, Coifman, 2006b).

This research continue work originally funded by the Midwest Regional

University Transportation Center (MRUTC, the predecessor to NEXTRANS) and which

had very promising results to date (Coifman, 2007). Within this research, we refined

unconventional techniques for estimating speed at a single-loop detector, yielding

estimates that approach the accuracy of a dual-loop detector's measurements. Employing

these speed estimation advances, this research enabled length based vehicle classification

to single-loop detectors. The research promises to extend vehicle classification to single-

loop detector count stations and the many single-loop detector stations already deployed

for real-time traffic management. The work also offers a viable treatment in the event that

one of the loops in a dual-loop detector classification station fails.
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In short, this research seeks to mainstream advances in speed and length

estimation from single-loop detectors and develop a vehicle classification methodology

for these detectors. As noted in a draft research statement from the TRB Committee on

Highway Traffic Monitoring, "Classification based solely on vehicle length is an

alternative to axle-based classification but there has been no systematic study of how well

it works -- or how it should work."

There has been considerable research on vehicle classification leading to the

conventional technologies as well as on-going work in emerging technologies. Needless

to say, the body of work is broad. For length-based classification from loop detectors,

there are three interrelated parameters that can be measured or estimated for each passing

vehicle, namely length (l), speed (v) and the amount of time the detector is "on", i.e., the

on-time (on). These parameters are related by Equation A-1,

l = v on (A-1)

The distinction between different detection technologies is important.

Conventional dual-loop detectors can measure both on-time and speed directly, and so

they are often employed to classify vehicles based on length (via Equation A-1).

Conventional single-loop detectors can only measure on-time. In the absence of accurate

speed estimation from single-loops, these detectors have not been used to estimate

vehicle length or classify vehicles. As already noted, single-loop detectors are the most

common vehicle detector in use to monitor traffic, and this research seeks to extend

vehicle length estimation and vehicle classification to these detectors.

As a precursor, many researchers have sought better estimates of speed from

single-loop detectors. The preceding research has emphasized techniques that use many

samples of aggregate flow (q) and occupancy (occ) to reduce the estimation error, e.g.,

Mikhalkin et al (1972), Pushkar et al (1994), Dailey (1999), Wang and Nihan (2000),

Coifman (2001). Although rarely noted, these techniques effectively seek to reduce the

bias due to long vehicles in measured occupancy. Rather than manipulating aggregate
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data, we developed new aggregation methods to reduce the estimation errors (Coifman et

al, 2003; Neelisetty and Coifman, 2004; Coifman, 2007).

A thorough review of the literature on loop-detector based vehicle classification

will reveal the following four main thrusts: inductive signature based classification; data

cleaning at dual-loop detectors; estimates from conventional single-loop detectors; and

classification from non-invasive detectors. The following reviews each one of these

thrusts in turn. When reviewing the literature, it is stunning to find that all of the

classification studies exhibit either a very small validation data set (under 1,000 vehicles,

often under 100) or they were only compared against the results generated from dual loop

detectors without any manual validation (and thus, any errors present in the dual-loop

detectors would go unaccounted for). Presumably the problems of a small data set are

obvious, but trusting that the dual-loop results are accurate can be equally problematic

(e.g., we found loop detectors were "dropping out" in the middle of semi-trailer trucks, a

problem that impacted both dual and single-loop detector classifications alike). In either

case, the studies have all been limited to a small number of detector stations, often

employing just a single station, but never more than 10 detector stations. Such a small

sample size precludes capturing the impacts of different vehicle fleet compositions (long

versus short vehicles), traffic conditions (free flow versus congested), and variable

detection hardware performance. Except for our research, few have explicitly sought out

the most challenging conditions: congestion, and high percentages of long vehicles.

A.1 Inductive Signature Based Classification

Conventional loop detectors only report a binary state- occupied or empty. In the

process of making this determination, the detectors measure the loop's inductance several

hundred times a second. These inductive measurements can be captured and integrated to

form an "inductive signature" for each passing vehicle. Inductive signature based

classification seeks to identify characteristic features of these signatures to classify

vehicles. Inductive signature based classification has been a subject of research for 30

years, but like automated highways, while this area has shown promise it has not entered
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mainstream practice. It requires new detector hardware in the controller cabinets and is

only partially compatible with the existing infrastructure. Several papers present

effectively a proof of concept employing a very small validation data set of fewer than

100 vehicles, e.g., Reijmers (1979), Gajda et al (2001), Cheung et al (2005). Only slightly

more ambitious, Sun and Ritchie (2000) compared performance against a manually

validated data set of 300 vehicles from two detector stations. Oh et al (2002) continued

the work at a new detector station and used a validation set of 340 vehicles. Separately,

Ki and Baik (2005, 2006) developed a similar classification tool and validated it against a

set of 622 vehicles, which were apparently manually validated. For these three latter

studies, it appears that all of the data come from uncongested conditions, with long

vehicles making up less than 10% of the flow.

A.2 Data Cleaning at Dual-Loop Detectors

Conventional loop detector stations measure individual vehicle actuations and

then aggregate these data to flow, occupancy and average speed over fixed time periods,

typically ranging from 20 sec to 5 min. The individual actuations are then typically

discarded. Several researchers have developed statistical tests to evaluate whether the

time series aggregate data are within statistical tolerance (e.g., Jacobson et al, 1990,

Cleghorn et al, 1991, Nihan, 1997). Because these automated systems only use

aggregated data, they must accept a large sample variance and potentially miss problems

altogether. For example, the systems have to tolerate a variable percentage of long

vehicles in the sample population. As the percentage of long vehicles increases, the

occupancy/flow ratio should increase simply because a long vehicle occupies the detector

for more time compared to a shorter vehicle traveling at the same velocity, see Coifman

(2001) for examples.

Chen and May (1987) developed a new approach for verifying detector data using

event data, i.e., individual vehicle actuations. Their methodology examines the

distribution of vehicles' on-time, i.e., the time the detector is occupied by a vehicle.

Unlike conventional aggregate measures, their approach is sensitive to errors such as
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"pulse breakups", where a single vehicle registers multiple actuations because the sensor

output flickers off and back on, i.e., dropping out. Coifman (1999) went a step further and

compared the measured on-times from each loop in a dual loop detector on a vehicle-by-

vehicle basis. At free flow velocities the on-times from the two loops should be virtually

identical regardless of vehicle length, even allowing for hard decelerations. Many

hardware and software errors will cause the two on-times to differ. At lower velocities,

vehicle acceleration can cause the two on-times to differ even though both loops are

functioning properly and thus, congested periods were excluded from the earlier analysis.

Coifman and Dhoorjaty (2004) developed a suite of event data based tests to catch

several detector errors based on physical constraints (feasible vehicle length, feasible

headways, etc.). Zhang et al (2005) and Cheevarunothai et al (2007) continued the

research, setting out the specific objective of, "identifying possible causes of dual-loop

errors and developing a new dual-loop algorithm that could tolerate erroneous loop

actuation signals."

A.3 Estimates from Conventional Single-Loop Detectors

While dual-loop detector length based vehicle classification is well within

conventional practice, the fact remains that most loop detector stations are only equipped

with single-loop detectors and cannot measure vehicle lengths. There are only three

research groups seeking to improve speed and length estimates from conventional single-

loop detectors to the point where they can be used to classify vehicles.

The first group, Kwon et al (2003), developed a method employing aggregate

flow and occupancy from single-loop detectors to estimate the percentage of long

vehicles that passed. The work depends on two fundamental assumptions, the presence of

a truck-free lane and that the detector station exhibits high lane-to-lane speed correlation.

They employed conventional detectors, used many days, using several stations from three

facilities. The work only validated the results against aggregate dual loop measurements

and weigh-in-motion (WIM) data. The former yielded good results, while the latter had

20% overestimation, highlighting the importance of employing a truly independent
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measure of ground truth. The research studied facilities with low to moderate truck

volumes (under 10% of the fleet) and did not explicitly single out performance in

congested conditions. In fact they note that, "[i]t was observed that the estimate of truck

volume is biased and unstable at the start of the congestion period."

The second group, Wang and Nihan (2003, 2004) also developed a method

employing aggregate flow and occupancy from single-loop detectors to estimate the

percentage of long vehicles that passed. Like Kwon et al, their work also depends on two

fundamental assumptions, though slightly different, "constant average speed for each

[three minute long] time period and at least two intervals containing only [short vehicles]

in each period." They employed conventional detectors, used many days, using four

detector stations. Also like Kwon et al, the work only validated the results against

aggregate dual loop measurements. The research studied facilities with low to moderate

truck volumes (under 10% of the fleet) and did not explicitly single out performance in

congested conditions. These authors note, "[h]ence, the algorithm should work better

under less congested conditions." The authors also explicitly note the limitation of the

small number of test sites, "[a]lthough the algorithm performed reasonably well at the

selected sites and days, future research is needed to handle the conditions when one or

both of the assumptions are violated in order to reduce estimation errors.... The proposed

algorithm will be more robust and accurate when the violation circumstances are properly

addressed." They also state that "[f]uture research will specifically address these

problems and widely check the transferability of the algorithm to other sites." More

recently, this group has revised their methodology (Zhang et al, 2006). This recent study

is subject to many of the same limitations as their earlier work, it employs aggregate flow

and occupancy, was tested at only two detector stations (with approximately 10% truck

flows), and only compared the results against aggregate dual-loop detector

measurements. The final conclusion of this paper states that, "[a]lthough the proposed

ANN method produced favorable bin volumes, further improvements to its performance

are possible through optimizing its network design and training, especially under heavily

congested conditions. Additionally, more accuracy tests with data from different types of
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roads and different areas also help in understanding the spatial transferability of the

proposed method." Clearly indicating both the fact that they did not explicitly examine

performance under congested conditions and that the results are limited to the small

number of test sites.

The third group is our group. Our research was funded by the predecessor to

NEXTRANS (Coifman, 2007, Coifman and Kim, 2009). Unlike the other two groups

working in this area, we did not employ aggregate data, instead, we used the individual

vehicle actuations and explicitly classified each and every vehicle. This point is

important, because the earlier efforts that relied on aggregate measurements from dual-

loop detectors allow over-counting errors to cancel undercounting errors, so the reported

results in the earlier studies may be overly optimistic. While the earlier studies compiled

results against dual-loop detectors for several days, our study compiled results for 13

dual-loop detector stations over an entire month (again, we used individual vehicle

comparisons while the earlier studies used aggregate data). Unlike the earlier studies, we

considered truck volumes over 10% of the fleet. In fact we explicitly generated synthetic

detector data to simulate truck volumes up to 90%. Furthermore, we did not rely strictly

on dual-loop detectors for validation, we manually generated ground truth vehicle length

data from concurrent video for approximately 25,000 vehicles While this number of

vehicles is large, it still only represents a total of 6 hours of traffic, sampled at two

locations, and we felt a much broader ground truth is needed to ensure the classification

process is robust, especially since we discovered that detectors were "dropping out" in the

middle of semi-trailer trucks, a problem that impacted both dual and single-loop detector

classifications alike (see Coifman, 2007 for details). Even with a much larger data set

than the second group, we came to a similar conclusion, namely that additional locations

need to be tested. Hence the present research.

A.4 Classification from Non-Invasive Detectors

As noted earlier, most of the non-invasive vehicle detectors that have entered

conventional practice mimic the operation of single loop detectors. The two most
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prevalent examples of these detectors being the SmartSensor by Wavetronix and RTMS

by EIS. Both sensors can provide length based classification data, though the specific

algorithms are proprietary. While the sensors often provide reasonable counts and speed

estimates in aggregate data, per-vehicle analysis has shown that the aggregate data allow

over-counting errors to cancel under-counting errors and that individual vehicle on-times

can be subject to large errors (see, e.g., Zwahlen et al, 2005; Coifman, 2006b). The

literature is surprisingly lacking in terms of evaluating the classification performance

from these sensors.

Zwahlen et al, (2005) evaluated the Wavetronix sensor in uncongested, low

volume traffic, with low truck flows. While these conditions should lead to favorable

performance by the sensor, after comparing the classification results against manually

generated ground truth data the authors concluded that, "vehicle classification is

unreliable; the fraction of trucks in a lane can be severely overestimated or

underestimated." Trucks were undercounted by as much as 80% in the worst case and "at

this time, the system does not reliably estimate the number of trucks in the traffic

stream."

Zhang et al (2007) compared the Wavetronix sensor against the Autoscope (an

image processing based system) with no independent ground truth. As a result, they

conclude that "[a]n extensive calibration effort with the support of ground truth data

would be required before any definitive statements can be made related to the accuracy of

speed and vehicle classification capabilities. More investigation on this topic is suggested

for future studies."

Finally, the EIS web site provides excerpts of a research study conducted for the

Pennsylvania Department of Transportation (EIS, 2007). This two-page summary

includes a table reporting classification performance from the RTMS and several other

non-invasive sensors tested at three sites, all with truck volumes of 10% or less. It

provided no indication of the traffic conditions. While the apparent objective of the

document is to show that the RTMS by EIS performs better than a "competitive radar",

the statistics included in this promotional flyer clearly show that at all three sites RTMS
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counts for single unit trucks and tractor-trailer trucks were consistently 50% below

manual counts (the "competitive radar" had counts that were frequently 2-5 times larger

than the manual counts).

So while the manufacturers offer vehicle classification from these non-invasive

sensors, the specific algorithms are undocumented and to the extent that they have been

evaluated in the literature, the performance is poor.
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APPENDIX B

Speed trends underlying the ground truth data in congestion



       

       

Figure B.1. Speed trend at detector stations that are selected from the ground truth data with

pulse breakup, (a) St 3 NB 3/21/08, (b) St 3 NB 4/18/08, (c) St 4 NB 9/09/08, and

(d) St 9 SB 4/07/08
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Figure B.2, Speed trend at detector stations that are selected from the ground truth data

without pulse breakup during congested condition: (a) St 41 EB 3/12/09, (b) St 43

EB 3/12/09, (c) St 56 WB 9/03/08, (d) St 102 EB 3/10/09, and (e) St 104 EB

3/17/08
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